• 제목/요약/키워드: Force Prediction

검색결과 906건 처리시간 0.023초

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.

엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측 (In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling)

  • 최종근;양민양
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

공조용 압축기 배관계의 과도진동 예측 및 저감설계 (Prediction and Reduction of Transient Vibration of Piping System for a Rotary Compressor)

  • 유상모;정의봉;한형석
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.733-740
    • /
    • 2011
  • This paper deals with the process to identify the transient exciting force generated from a rotary compressor. The compressor was assumed to be a rigid body. The equation of motion of a rigid compressor supported by three mounts was derived with 6 degree-of-freedom. The exciting forces at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. Compressor-pipe system was modeled numerically. The accelerations of compressor and pipe were predicted numerically by using the estimated exciting force. A new shape of pipe model was proposed to reduce the vibration. In the prediction by the method in this paper, the maximum acceleration of the pipe could be reduced by 53.7 % at the steady-state and by 12 % at the transient process. In the real experiments, the maximum acceleration of the pipe was reduced by 54.2 % at steady-state and 14.7 % at the transient process. It was verified that the numerical results showed good agreement with experimental results.

절삭력에 의한 공구와 공작물의 상대적 변형량 예측 [1] (Prediction of Relative Deformation between Cutting Tool and Workpiece by Cutting Force [$1^{st}$ paper])

  • 황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.86-93
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. Thermal and weight deformations can be measured at various positions of the machine tool and stored in the compensation registers of the CNC unit and compensated the errors during machining. However, the cutting force induced errors are difficult to compensate because estimation of cutting forces are difficult. To minimize the error induced by cutting forces, it is important to improve the machining accuracy. This paper presents the pre-calculated method of form error induced by cutting forces. In order to estimate cutting forces, Isakov method is used and the method is verified by comparing with the experimental results. In order to this, a cylindrical-outer-diameter turning experiments are carried out according to cutting conditions.

어업용 면세유류 사용량 예측에 관한 연구 (Analysis of Prediction Supply of Fisheries Fuel in Korea)

  • 이광남;정진호
    • 수산경영론집
    • /
    • 제43권1호
    • /
    • pp.49-61
    • /
    • 2012
  • The tax exemption oil for fishery is expecting that the use of oil is gradually decreasing according to the environmental change such as reductions of vessel force caused by an upswing of oil prices and reduction of fishing vessels in the recent. Such reductions in the tax exemption oil amount have a negative effect on the tax exemption oil business and the fishery infrastructure. This paper studied to provide the basic data for a stable supply thorough the facts affected in the use of the tax exemption oil and the prediction for the use of the tax exemption oil in future. This analysis drew a estimation method by Cochrane-Orcutt repeated proceeding model with an object main factors such as a price of tax exemption oil and vessel force and international oil prices and exchange rates. And this analysis also drew the use of a tax exemption oil by 2000 after set up the scenario using an estimation method drawn. For the use of the estimated tax exemption oil analyzed to decrease within about 81 percent of the present(2020), It should be considering a stability plan for tax exemption oil for fishery in future.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • 제11권1호
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.

Lifetime prediction of bearings in on-board starter generator

  • Zieja, Mariusz;Tomaszewska, Justyna;Woch, Marta;Michalski, Mariusz
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.289-302
    • /
    • 2021
  • Ensuring flight safety for passengers as well as crew is the most important aspect of modern aviation, and in order to achieve this, it is necessary to be able to forecast the durability of individual components. The present contribution illustrates the results of a computational analysis to determine the possibility of analysing the prediction of bearing durability in on-board rotating equipment from the point of view of thermal fatigue.In this study, a method developed at the Air Force Institute of Technology was used for analysis, which allowed to determine the bearing durability from the flight altitude profile. Two aircraft have been chosen for analysis - a military M-28 and a civilian Embraer. As a result of the analysis were obtained: the bearing durability in on-board rotating devices, average operation time between failures, as well as failure rate. In conclusion, the practical applicability of this approach is demonstrated by the fact that even with a limited number of flight parameters, it is possible to estimate bearing durability and increase flight safety by regular inspections.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

Prediction of force reduction factor (R) of prefabricated industrial buildings using neural networks

  • Arslan, M. Hakan;Ceylan, Murat;Kaltakci, Yaspr M.;Ozbay, Yuksel;Gulay, Fatma Gulten
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.117-134
    • /
    • 2007
  • The force (load) reduction factor, R, which is one of the most important parameters in earthquake load calculation, is independent of the dimensions of the structure but is defined on the basis of the load bearing system of the structure as defined in earthquake codes. Significant damages and failures were experienced on prefabricated reinforced concrete structures during the last three major earthquakes in Turkey (Adana 1998, Kocaeli 1999, Duzce 1999) and the experts are still discussing the main reasons of those failures. Most of them agreed that they resulted mainly from the earthquake force reduction factor, R that is incorrectly selected during design processes, in addition to all other detailing errors. Thus this wide spread damages caused by the earthquake to prefabricated structures aroused suspicion about the correctness of the R coefficient recommended in the current Turkish Earthquake Codes (TEC - 98). In this study, an attempt was made for an approximate determination of R coefficient for widely utilized prefabricated structure types (single-floor single-span) with variable dimensions. According to the selecting variable dimensions, 140 sample frames were computed using pushover analysis. The force reduction factor R was calculated by load-displacement curves obtained pushover analysis for each frame. Then, formulated artificial neural network method was trained by using 107 of the 140 sample frames. For the training various algorithms were used. The method was applied and used for the prediction of the R rest 33 frames with about 92% accuracy. The paper also aims at proposing the authorities to change the R coefficient values predicted in TEC - 98 for prefabricated concrete structures.