• Title/Summary/Keyword: Force Modulation Microscope

Search Result 4, Processing Time 0.019 seconds

Investigation of the Frictional Behavior with respect to Surface Geometry and Surface Material at Nanoscale (나노스케일에서의 표면형상 및 재료변화에 대한 마찰거동 고찰)

  • 성인하;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.36-41
    • /
    • 2001
  • In this work, the changes in the friction force(lateral force) with respect to nanoscale geometric variation were investigated using an Atomic Force Microscope and a Lateral Force Microscope. It could be concluded that the changes in the friction force correspond well to the slope change rather than the surface slope itself, and that the influence of slope change on the frictional behavior is dependent on the magnitude of the slope and the torsional stiffness of the cantilever. Also, the nominal friction force is found to be more significantly affected by the material and the physical-chemical state of the surface rather than by nanoscale geometric steps. However, the change in nanoscale geometric details of the surface cause instantaneous change and slight variation in the friction signal.

  • PDF

Effect of Laser Beam Trajectory on Donor Plate in Laser Induced Thermal Printing Process

  • Lee, Kwang-Won;Lee, Si-Jin;Kwon, Jin-Hyuk;Yi, Jong-Hoon;Park, Lee-Soon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.362-367
    • /
    • 2011
  • Organic ($Alq_3$) film, which was coated on a donor plate, was transferred to an organic light emitting diode (OLED) substrate with help of heat generated by a dithering laser beam. The laser beam was diffracted in an acousto-optic modulator (AOM), then focused on the laser-to-heat converting layer of the donor plate; the focused spot followed trajectories guided by rotation of a Galvano-mirror. Three different functional waveforms, sine wave, square wave, and saw tooth wave were applied to the AOM as modulation signal to generate the dithering beam. The fluorescence microscope images of the donor plate showed that the patterns of removed $Alq_3$ film were affected considerably by the modulation waveforms and the phase difference between adjacent dithering beams. Further, the printed images of Alq3 film on the OLED substrate were different from the patterns of removed Alq3 film. Atomic force microscope images indicated that not only direct transfer but also deposition by sublimated vapor of Alq3 contributed to the pattern formation. Printed patterns affected considerably the electricity-to-light conversion characteristics of OLEDs. For uniform transfer, not only the phase relation of dithering beam lines but also adequate waveform were important.

Rapid Topological Patterning of Poly(dimethylsiloxane) Microstructure (Poly(dimethylsiloxane) 미세 구조물의 신속한 기하학적 패터닝)

  • Kim, Bo-Yeol;Song, Hwan-Moon;Son, Young-A;Lee, Chang-Soo
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2008
  • We presented the modified decal-transfer lithography (DTL) and light stamping lithography (LSL) as new powerful methods to generate patterns of poly(dimethylsiloxane) (PDMS) on the substrate. The microstructures of PDMS fabricated by covalent binding between PDMS and substrate had played as barrier to locally control wettability. The transfer mechanism of PDMS is cohesive mechanical failure (CMF) in DTL method. In the LSL method, the features of patterned PDMS are physically torn and transferred onto a substrate via UV-induced surface reaction that results in bonding between PDMS and substrate. Additionally we have exploited to generate the patterning of rhodamine B and quantum dots (QDs), which was accomplished by hydrophobic interaction between dyes and PDMS micropatterns. The topological analysis of micropatterning of PDMS were performed by atomic force microscopy (AFM), and the patterning of rhodamine B and quantum dots was clearly shown by optical and fluorescence microscope. Furthermore, it could be applied to surface guided flow patterns in microfluidic device because of control of surface wettability. The advantages of these methods are simple process, rapid transfer of PDMS, modulation of surface wettability, and control of various pattern size and shape. It may be applied to the fabrication of chemical sensor, display units, and microfluidic devices.

EFFECTS OF HEAT-KILLED AND SONIC EXTRACTS OF MICROORGANISM ON CULTURED CELLS (세균액 및 세균단백질 추출물이 배양 세포에 미치는 영향)

  • Yu, Young-Dae;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.606-618
    • /
    • 2000
  • Dental pulp infection is most commonly caused by extensive dental caries, and some bacterial species invade root canals; bacterial components and products are thought to be associated with the pathogenesis of periapical periodontitis. A principle driving force behind pulpal disease response appears to lie in the host immune system's to bacteria and their products. We examined the production of interleukin $1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor ${\alpha}$(TNF-${\alpha}$) from human peripheral mononuclear cells, lymphocytes and monocytes stimulated by heat-killed Acitnobacillus actinomycetemcomitans (ATCC 29523), Porphyromonas gingivalis (ATCC 33277) and Prevotella intermedia (ATCC 25611), and also by their sonicated bacterial extracts (SBE), respectively. The effects of three strains of heat-killed bacteria and their SBEs on the morphology of cultured blood cell lines HL-60 (KCLB 10240) and J774A.1 (KCLB 40067) were observed under the inverted microscope. Ultrastructural changes of J774A.1 exposed to heat-killed P. intermedia and its SBE were investigated using transmission electron microscopy. Production of IL-$1{\beta}$ was reduced in human peripheral mononuclear cells after stimulation by sonic bacterial extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. Heat-killed and sonic extract of P. gingivalis inhibited the production of TNF-${\alpha}$ in peripheral mononuclear cells. Production of TNF-${\alpha}$ was inhibited in peripheral monocytes after stimulation by sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. HL-60 and J 774A.1 cells showed granular degeneration after treatment with heat-killed and sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia Chromatin margination and shrinkage were observed in 774A.1 treated with heat-killed P. intermedia. Cell wall structure and organelles were destroyed and vacuoles were formed in cytoplasm in J774A.1 treated with P. intermedia sonic extract. These results suggest that A actinomycetemcomitans, P gingivalis and P intermedia may have an important role in the formation and progression of pulpal diseases via both modulation of production of IL-$1{\beta}$ and TNF-${\alpha}$ from blood mononuclear cells and cytopathic effects.

  • PDF