• Title/Summary/Keyword: Force Modelling

Search Result 230, Processing Time 0.023 seconds

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.

A Study on the Snake Motion of a Machine Tool Cross-Head Moving with Dry Friction on LM Guides (LM 가이드 상에서 건마찰 접촉을 하면서 운동하는 Cross Head의 사행동에 관한 연구)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.708-713
    • /
    • 2000
  • This paper reviews the concepts of the snake motion which can be often observed on the bodies moving along guide rails. A simple modelling is proposed in order to analyze the snake motion of the cross head assembly and force and moment equilibrium equations are established. It is determined the critical conditions at which snake motion just brings about. Some possible methods to reduce or prevent snake motion are discussed in detail.

  • PDF

System Dynamics Modelling on Religious Populations (종교 인구의 다이내믹스에 관한 시론적 모델)

  • Kim, Dong-Hwan
    • Korean System Dynamics Review
    • /
    • v.15 no.3
    • /
    • pp.37-59
    • /
    • 2014
  • This paper is to study dynamics of populations of religions. As human population is a crucial source of social dynamics, the religious population is a driving force that changes political and cultural landscape of society. Although many christian scholars have reported important causal factors in changing population of christian world, there are few studies on the dynamics of religious population in system dynamics. This paper interprets these dynamic mechanisms in terms of feedback loops and constructs a basic system dynamic model to forecast future trend of religious population in Korean society.

  • PDF

Resolved Motion Control of the Robot Manipulator using Neural Network (신경회로망을 이용한 로보트 매니츌레이터의 Resolved Motion제어기의 설계)

  • 송문철;조현찬;이홍기;전홍태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.519-526
    • /
    • 1990
  • In this paper we propose the resolved motion controller using a neural network for a robot manipulator. Neural identifier designed by a neural network is trained by using a feedback force as an error signal. The identifier approximates the output of a unknown nonlinear system by monitoring both the input and the output of this system. If the neural network is sufficiently trained well, it does not require either strict modelling of the manipulator or precise parameter estimation. The effectiveness of the proposed controller is demonstrated by computer simulation using a two-link planar robot.

  • PDF

A Study on the Analysis of Galloping for Power transmission line (송전선의 전선도약 해석에 관한 연구)

  • 김환성;변기식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1051-1057
    • /
    • 2001
  • In this paper, we deal with three types of modelling method for the analysis of galloping in power transmission line (PTL). The single mass model is obtained under linearization method and it is applied into f-order model. On these models, the nature frequencies of PTL are obtained and it makes an effects on the galloping directly. In simulation, we verify that the maximum magnitude of nature frequency depends on the galloping distance of PTL. Also from the analysis of frequency response, a few of reduction method for galloping are introduced which is effected by distance of PTL, wind velocity and icing types.

  • PDF

A Study on Design and Characteristics of Linear Magnetostrictive Actuator Using Terfenol-D (Terfenol-D를 이용한 선형 자기변형 구동기의 설계 및 특성 연구)

  • 임채욱;정태영;문석준;김병현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.308-316
    • /
    • 2003
  • Terfenol-D is one of magnetostrictive materials which have the property of converting the energy in magnetic fields into mechanical movement and vice versa. We designed and fabricated a linear magnetostrictive actuator using Terfenol-D. It has 25 mm diameter and 100 mm long. To grasp the characteristics of it, a series of tests were performed in the range of 50 Hz below. Induced-strain actuation displacements of the actuator measured by test and predicted by magnetic analysis agreed well. And blocked forces according to the input currents were estimated from the testing results. Modelling method representing the exerting force of a linear magnetostrictive actuator was confirmed through some testing results.

자동회귀-이동평균(ARMA) 모델에의한 초음파 진동 절삭 공정의 해석

  • 최인휴;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.160-165
    • /
    • 1993
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identfy cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modelling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Data System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequencyand damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

Design of Deceleration Controller for Air Braking System (공기제동 시스템의 감속도 제어기 설계)

  • Lee K. K.;Kim W. K.;Kim M. Y.;Yoon S. C.;Baik K. S.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.696-701
    • /
    • 2004
  • Electric vehicle that is manufactured present by development of electric vehicle technology were available automatic driving. Control of air breaking system for precision stopping is important at automatic driving. Current Electric vehicle is doing precision stopping using braking force control. Braking force control is difficult to take static deceleration by rail condition or change of friction coefficient. Therefore, Proposed the controller in this study is deceleration controller. Designed controller is a robust controller that take state control characteristic for modelling error.

  • PDF

Digital Control of an Electromagnetic Levitation System (자기부상 시스템의 디지털 제어)

  • 이승욱;이건복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2312-2321
    • /
    • 1994
  • In this work the dynamics of an electromagnetic levitation system is described by a set of three first order nonlinear ordinary differential equations. The objective is to design a digital linear controller which takes the inherent instability of the uncontrolled system and the disturbing force into consideration. The controller is made by employing digital linear quadratic(LQ) design methodology and the unknown state variables are estimated by the kalman filter. The state estimation is performed using not only an air gap sensor but also both an air gap sensor and a piezoelectric accelerometer. The design scheme resulted in a digital linear controller having good stability and performance robustness in spite of various modelling errors. In case of using both a gap sensor and an accelerometer for the state estimation, the control input was rather stable than that in a system with gap sensor only and the controller dealt with the disturbing force more effectively.

Modelling of High-Speed Pantograph and Controller Design Using Disturbance Observer (고속 팬터그래프의 새로운 동적 모형 및 외란관측기를 이용한 제어기 설계)

  • Jo, Nam-Hoon;Lee, Kang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2233-2239
    • /
    • 2007
  • The pantograph-catenary system is one of important components for high-speed rail system that are powered electrically. Electrical power is delivered from a catenary structure to the train via a pantograph and thus it is very important to regulate the contact force between catenary and pantograph. Although a lot of research results for active pantograph have been reported, most of them have made an unrealistic assumption that the catenary displacement is constant with respect to the time. In this paper, we present a new pantograph model that regards the catenary displacement as an unknown disturbance input. Moreover, a disturbance observer based controller is proposed to remove the effect of disturbance, i.e., the catenary displacement variation. The computer simulation result shows that the substantial improvement in regulating the contact force can be achieved by the proposed controller.