• 제목/요약/키워드: Force Modelling

검색결과 233건 처리시간 0.032초

Social Media Adoption: Small and Medium-sized Enterprises' Perspective in Sri Lanka

  • SAMSUDEEN, Sabraz Nawaz;THELIJJAGODA, Samantha;SANJEETHA, Mohamed Buhary Fathima
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.759-766
    • /
    • 2021
  • In this digital age, all organizational environments force businesses to adopt Information and Communication Technologies (ICT) since these technologies have immense impact on such businesses' competitiveness and productivity. Nonetheless, the productivity and the competitiveness enjoyed by such firms vary depending on the size or the organizations, context of the country; developing or developed, and what kinds of technologies are adopted. This investigation focused on small- and medium-sized enterprises (SMEs) of Eastern province of Sri Lanka where such studies are scanty. The adoption of social media (SM) by SMEs is inclined to change how organizations operate, this calls for an investigation of the elements that impact SMEs to adopt SM and such investigation. Technology-Organization-Environment (TOE) framework was based to understand the factors. Research approach was quantitative approach using questionnaire survey. Data were collected using online form to see 285 valid responses. Structural Equation Modelling was deployed to evaluate the proposed model. Results revealed that Relative Advantage, Compatibility, Complexity, Observability, Competitive Intensity, Bandwagon Pressure, and Competitive Pressure were influencing, while Trialability, Top Management Support, CEO's Innovativeness did not show statistically significant influence on SMEs' social media adoption.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

Optimization of lateral resisting system of framed tubes combined with outrigger and belt truss

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.19-35
    • /
    • 2022
  • In this paper, the optimum location of the belt truss-outrigger for a combined system of framed tube, shear core and outrigger-belt truss is calculated. The optimum location is determined by maximization of the first natural frequency. The framed tube is modeled using a non-prismatic cantilever beam with hollow box cross section. The governing differential equation is solved using the weak form integral equations and the natural frequencies of the structure are calculated. The graphs are introduced for quick calculation of the first natural frequency. The location of the belt truss-outrigger that maximizes the first natural frequency of the structure is introduced as an optimum location. The structure is modeled using SAP-2000 finite elements software. In the modelling, the location of the belt truss-outrigger is changed along the height of the structure. With various locations of the outrigger, the lateral deflection of the all stories and axial force in the columns of the outer tube are calculated. The analysis is repeated by locating the outrigger-belt truss at the optimum location. The analysis results are compared and effect of the optimum location on the lateral deflection and the shear lag phenomena are investigated.

3.5 중량% NaCl 매질에서 구리에 대한 새로운 티아졸리딘디온 유도체의 부식 억제 특성 (Corrosion Inhibition Properties of New Thiazolidinedione Derivatives for Copper in 3.5 wt.% NaCl Medium)

  • 하산 르가즈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.27-28
    • /
    • 2021
  • The search for new corrosion inhibitors for different corrosive mediums is a never-ending task. In the present work, the corrosion inhibition behavior and adsorption mechanism of two novel synthetic thiazolidinedione derivatives noted MTZD and ATZD in 3.5 wt.% NaCl solution on copper were investigated. Electrochemical, scanning electron microscope (SEM), atomic force microscopy (AFM) techniques were used along with first-principles DFT calculations. At maximum inhibitor concentration i.e., 300 ppm corrosion inhibition efficiency reached maximum up to 90% and 96% for MTZD and ATZD, respectively, and thereby followed the order of ATZD > MTZD. The inhibition efficiency increased up to 24 h of immersion, and then decreased after 48h immersion. The potentiodynamic curves suggested that the inhibition action of tested compounds is a mixed type of inhibitor. The first-principles DFT calculations suggested that compounds under investigation formed covalent bonds with Cu(111) surface via reactive sites. SEM and AFM results confirmed the formation of protective barrier that prevent corrosion attack.

  • PDF

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • 제91권5호
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Numerical investigation on hydrodynamic response of a SPAR platform for offshore wind energy

  • Arya Thomas;V.K. Srineash;Manasa Ranjan Behera
    • Ocean Systems Engineering
    • /
    • 제14권3호
    • /
    • pp.211-235
    • /
    • 2024
  • Th COP28 has emphasized the governments to speed up the transition away from fossil fuels to renewables such as wind and solar power in their next round of climate commitments. The steady and less turbulent wind over the ocean draws increased attention of governments, industries and researchers on exploring advanced technologies to extract energy from offshore wind. The present study numerically investigates the hydrodynamic behavior of a SPAR-type Floating Offshore Wind Turbine (FOWT) under various wave conditions and mooring line configurations. One of the major focuses of this study is investigating a freak wave's impact on a FOWT and determining its extreme responses. The study investigates the structural response under various wave impact for different configurations of mooring lines. The present study examines the wave-structure interaction under regular and freak wave conditions using numerical modelling approach. During the study, it is ensured that the natural frequency and wave induced motions of SPAR are inline with the experimental studies; thereby increasing the confidence in using the numerical model and domain for this investigation. The study considers the behaviour of slack and taut mooring arrangements under these wave conditions. The study observed that a taut mooring configuration can be efficient in restraining the FOWT motions, especially under a freak wave scenario. The Froude-Krylov force shows a non-linearity due to the non-uniform profile of the platform under all wave conditions. Overall, the study contributes to determining the performance of the mooring configurations under different wave conditions.

사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동 (Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles)

  • 이철주
    • 한국터널지하공간학회 논문집
    • /
    • 제14권4호
    • /
    • pp.337-356
    • /
    • 2012
  • 본 연구에서는 3차원 유한요소해석을 실시하여 사용 중인 단독말뚝 및 군말뚝의 측면에서 실시된 터널굴착에 의한 말뚝의 거동을 분석하였다. 수치해석에서는 터널굴착으로 유발된 말뚝-지반 경계면에서의 전단응력전이를 미끄러짐(slip)을 고려할 수 있는 접촉요소(interface element)를 이용하여 분석하였다. 본 연구는 말뚝-지반경계면에서의 전단응력, 말뚝의 축력 및 지반 및 말뚝의 변형에 대한 분석을 포함한다. 탄성이론에 근거한 기존의 연구는 말뚝의 거동에 영향을 미치는 주요인자들을 적절히 고려하지 못하여 말뚝의 거동을 명확하게 분석할 수 없는 것으로 나타났다. 터널굴착으로 유발된 말뚝-지반 사이에서의 전단응력전이로 인하여 말뚝인접 지반의 전단응력 및 말뚝의 축력분포가 크게 변하는 것으로 나타났는데, 터널 springline 상부에서는 하향의 마찰력이 발생하였으며, 그 하부에서는 상향의 저항력이 발현되어 말뚝에는 압축력이 발생하였다. 경계면에서의 전단응력 발현정도는 말뚝-지반의 상호거동에 가장 큰 영향을 미치는 것으로 분석되었다. 군말뚝의 축력분포에 대한 분석결과 단독말뚝에 비해 터널굴착의 영향을 덜 받는 것으로 나타났다. 터널굴착으로 유발된 말뚝의 침하와 관련된 말뚝의 겉보기 지지력 감소는 크지 않은 것으로 분석되었다.

말뚝선단의 위치가 터널근접 시공에 의한 말뚝의 거동에 미치는 영향에 대한 연구 (A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling)

  • 이철주;전영진
    • 한국터널지하공간학회 논문집
    • /
    • 제17권2호
    • /
    • pp.91-105
    • /
    • 2015
  • 본 연구에서는 3차원 유한요소해석을 실시하여 말뚝의 하부에서 실시된 터널시공으로 인한 말뚝의 거동을 말뚝선단의 상대위치를 고려하여 분석하였다. 수치해석에서는 순수하게 터널굴착으로 인해 유발된 (tunnelling-induced) 말뚝침하, 축력분포, 전단응력 및 겉보기안전율의 변화를 심도 있게 고찰하였다. 말뚝의 선단이 터널굴착에 대한 말뚝선단의 위치를 고려한 영향권 내부에 존재하는 경우 말뚝의 침하는 Greenfield 조건의 최대침하와 인근지반의 침하를 초과하는데 비해, 횡방향 이격거리가 증가하여 영향권 외부에 있는 경우 말뚝의 침하는 그 반대의 경향을 보였다. 말뚝선단이 영향권 내부에 존재하는 경우 tunnelling-induced 인장력이 발생하지만, 말뚝선단이 영향권의 외부에 존재할 경우 말뚝침하를 초과하는 인근지반의 침하로 인해 압축력이 발생하는 것으로 분석되었다. 터널굴착으로 인한 말뚝침하의 증가로 말뚝의 겉보기안전율(apparent factor of safety)은 말뚝선단이 영향권 내부에 존재할 경우 1.0 미만으로 감소하는 것으로 나타나 말뚝의 사용성에 심각한 문제가 발생할 수 있는 것으로 나타났다. 본 연구를 통해 분석한 말뚝선단의 위치에 대한 영향권 내부 및 외부에서의 말뚝의 거동을 말뚝의 침하, 축력 및 겉보기안전율에 대해 심도 있게 고찰하였다.

선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증 (3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile)

  • 이석형;한진태;진현식;김석중
    • 한국지반공학회논문집
    • /
    • 제37권2호
    • /
    • pp.19-31
    • /
    • 2021
  • 마이크로파일은 소구경 현장타설말뚝으로 간단한 시공법과 비교적 저렴한 공사비용으로 각종 건축물 및 구조물 기초보강 및 내진보강 등에 활용되고 있다. 말뚝 선단에 단순한 메커니즘의 고정 지압 구조체를 장착하여, 상부하중 작용 시 지압구가 압축·팽창하면서 선단 면적의 확대와 주면으로의 쐐기수평력을 발휘하여 지지력을 증대시키는 "선단 확장형 마이크로파일"이 개발되었으나, 개발된 공법에 대한 정확한 검증이 부족하여 실제 현장에서 활용되지 못하고 있는 실정이다. 이에 본 연구에서는, 선단 확장형 마이크로파일의 지지 메커니즘과 일반 마이크로파일 대비 지지력 증대효과를 검증하고자 3차원 수치해석을 수행하였다. 선단 확장형 마이크로파일을 모델링하고 수치해석을 위한 입력 물성치를 산정하였으며, Lab-scale 수치해석을 통하여 고정 지압 구조체가 압축·팽창되면서 발현되는 수평력에 의한 지지 메커니즘을 확인하였다. 이와 더불어 Field-scale 수치해석을 통해 일반 마이크로파일과의 지지력을 비교·검증한 결과, 압축 및 인발지지력이 각각 20.0%와 38.9% 증대되는 것을 확인하였다.