Corrosion Inhibition Properties of New Thiazolidinedione Derivatives for Copper in 3.5 wt.% NaCl Medium

3.5 중량% NaCl 매질에서 구리에 대한 새로운 티아졸리딘디온 유도체의 부식 억제 특성

  • Published : 2021.11.12

Abstract

The search for new corrosion inhibitors for different corrosive mediums is a never-ending task. In the present work, the corrosion inhibition behavior and adsorption mechanism of two novel synthetic thiazolidinedione derivatives noted MTZD and ATZD in 3.5 wt.% NaCl solution on copper were investigated. Electrochemical, scanning electron microscope (SEM), atomic force microscopy (AFM) techniques were used along with first-principles DFT calculations. At maximum inhibitor concentration i.e., 300 ppm corrosion inhibition efficiency reached maximum up to 90% and 96% for MTZD and ATZD, respectively, and thereby followed the order of ATZD > MTZD. The inhibition efficiency increased up to 24 h of immersion, and then decreased after 48h immersion. The potentiodynamic curves suggested that the inhibition action of tested compounds is a mixed type of inhibitor. The first-principles DFT calculations suggested that compounds under investigation formed covalent bonds with Cu(111) surface via reactive sites. SEM and AFM results confirmed the formation of protective barrier that prevent corrosion attack.

Keywords

Acknowledgement

이 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업이다. (No.2015R1A5A1037548)