• Title/Summary/Keyword: Force Measurement

Search Result 1,628, Processing Time 0.026 seconds

Dependence of Surface Morphology of Transparent Hydrophobic Anti-Reflective Coating (투명 발수 반사방지 코팅의 표면 형상 의존성)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.771-776
    • /
    • 2017
  • The cover glass of mobile displays and photovoltaic cells needs a functional coating, such as an anti-reflection and self-cleaning coating. Numerous studies have been conducted on the engineering application of biomimetic functional surfaces, such as moth eye and lotus leaf Anti-reflection coantings of silica nanoparticles could enhance the light transmittance. $TiO_2$ photocatalyst coatings have been applied to self-cleaning functional films. In this study, transparent hydrophobic anti-reflective coatings consisting of thin layers of $SiO_2/TiO_2$ nanoparticles were fabricated on a slide glass substrate by the sol-gel process and dip-coating process. The dependence of the surface morphology of the functional coatings was investigated by the atomic force microscopy (AFM), contact angle measurement, and UV-visible spectroscopy. It was found that the coating of $TiO_2$ nanoparticles exhibited a high average transmittance comparable to that of the bare slide glass substrate in the visible light range. The bi-layered functional coating of 7 nm $SiO_2$/7nm $TiO_2$ nanoparticles exhibits a transparent hydrophobic surface with a contact angle of $110^{\circ}$ and an improvement of the average transmittance of 2.3% compared to the bare slide glass substrate in the visible light range.

ZnO 나노 입자가 분산 된 Resin을 이용한 굴절률 조절 및 광 산란 패턴 형성을 통한 비정질 실리콘 박막태양전지의 효율 향상

  • Ko, Bit-Na;Kim, Jae-Hyeon;Kim, Gyu-Tae;Sin, Ju-Hyeon;Jeong, Pil-Hun;Chu, So-Yeong;Choe, Hak-Jong;Hyeon, Seok;Lee, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.295-295
    • /
    • 2014
  • 일반적으로 박막 태양전지의 효율은 박막 종류에 따른 광 흡수율에 의해 결정되며, 이는 증착한 박막의 두께에 의해 결정된다. 증착한 박막의 두께가 두꺼워질수록 광 흡수율은 증가하지만, 박막 두께가 지나치게 두꺼워지면 열화 현상으로 인한 모듈의 효율 감소가 생기므로 적절한 박막의 두께가 요구된다. 특히 a-Si:H의 경우 가시광 영역에서 높은 흡수계수를 가지고 있어서 얇은 박막 두께로도 태양전지의 제작이 가능하지만, 동일한 박막 두께에서 효율을 더욱 향상시키기 위한 다양한 광 포획 기술에 대한 연구가 많이 진행 되고 있다. 본 연구에서는 자외선을 이용한 nano-imprint lithography 기술을 이용하여 a-Si:H 태양전지의 유리기판 위에 pattern을 삽입하여 광 산란 효과를 향상 시키고자 하였다. 또한 유리기판의 굴절률 (n=1.5)과 투명전극의 굴절률 (n=1.9)의 중간 값을 갖는 ZnO nanoparticles (n=1.7)이 분산 된 imprinting resin을 사용함으로써 점진적으로 굴절률을 변화시켜, 최종적으로 a-Si:H 층까지의 광 투과율을 높이고자 하였다. 제작한 기판의 종류는 다음과 같다. 첫 번째 기판으로는 유리기판 위에 ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률의 변화에 의한 투과도 향상을 확인하고자 하였다. 두 번째 기판으로는 규칙적인 배열을 갖는 micro 크기의 패턴을 형성하였다. 마지막으로는 불규칙한 배열을 갖는 nano 크기와 micro 크기가 혼재 된 패턴을 형성하여 투과도 향상과 동시에 빛의 산란을 증가시키고자 하였다. 후에 이 세가지 종류를 기판으로 사용하여 a-Si:H 기반의 박막 태양전지를 제작하였다. 먼저 제작한 박막 태양전지용 기판의 광학적 전기적 특성을 분석하였다. 유리 기판 위에 형성한 패턴에 의한 roughness 변화를 확인하기 위해 atomic force microscopy (AFM)를 이용하여 시편의 표면을 측정하였다. 또한 제작한 유리 기판 위에 투명 전극층을 형성 후, 이로 인한 전기적 특성의 변화를 확인하기 위해 hall measurement system을 이용하여 sheet resistance, carrier mobility, carrier concentration 등의 특성을 측정하였다. 또한, UV-visible photospectrometer 장비를 이용하여 각 공정마다 시편의 광학적 특성(투과도, 반사도, 산란도, 흡수도 등)을 측정하였고, 최종적으로 제작한 박막 태양전지의 I-V 특성과 외부양자효율을 측정하여 태양전지의 효율 변화를 확인하였다. 그 결과 일반적인 유리에 기판에 제작된 a-Si:H 기반의 박막 태양전지에 비해, ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률 변화를 준 것만으로도 약 12%의 태양전지 효율이 증가하였다. 또한, micro 크기의 패턴과 nano-micro 크기가 혼재된 패턴을 형성한 경우 일반적인 유리를 사용한 경우에 비해 각각 27%, 36%까지 효율이 증가함을 확인하였다.

  • PDF

Applicability as a Dancheong Pigment Raw Materials of Korean Low Grade Kaolin (국내산 저품위 고령토자원의 단청안료 원료로써의 활용 가능성)

  • Moon, Dong Hyeok;Han, Min Su;Cho, Hyen Goo;Kim, Myoung Nam;Kim, Jae Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.179-190
    • /
    • 2016
  • X-ray diffraction analysis, chromaticity measurement, execution and evaluation by Dancheong artisan, accelerated weathering test, and fire resistance test were conducted to test the applicability as a Dancheong pigment raw materials of Korean low grade kaolin in cultural properties. The ores that feldspar rich and composed of fine particles (< $38.1{\mu}m$) showing advantageous for the inherent purpose of the white pigment than that of high grade kaolin. And the test of whiteness, concealment force, outdoor exposure durability and fire resistance shows similar or better result than existing products (Hobun and Sanhwa jidang). In conclusion, it is expected that the use of fine feldspar rich white soil and low-grade kaolin can be used as a white pigment raw materials which have similar to better material properties and economic efficiency than existing products.

Measurement of transmitted vibration to stapes and tympanic membrane by DFMT's vibration in implantable middle ear hearing devices (중이 이식형 보청기에서 DFMT의 진동에 의한 등골 및 고막 방향으로 전달되는 진동력 측정)

  • Lee, Myoung-Won;Seong, Ki-Woong;Lim, Hyung-Gyu;Kim, Min-Woo;Jung, Eui-Sung;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Lee, Sang-Heun;Lee, Kyu-Yup;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.286-293
    • /
    • 2009
  • The implantable middle ear hearing devices(IMEHDs) have been developed to overcome the conventional hearing aid's problem(ringing effect caused by the acoustic feedback, cosmetic problem, etc.). In the IMEHDs, the vibrating transducer is a key component because its vibration enables to hear for hearing impaired people. The vibrating transducer is implanted on ossicular chain by surgical operation. The coupling status between implanted transducer and ossicular chain has an effect on delivering vibrating force from transducer to stapes. Noninvasive method is required to investigate the output characteristics of IMEHDs after implementation. Recently, emitted sound pressure measuring method of tympanic membrane is proposed to investigate the output characteristics of IMEHDs. However, the relationship between displacement of stapes and sound pressure by tympanic membrane was not cleared. In this paper, displacement of stapes and sound pressure by tympanic membrane were measured using the differential floating mass transducer(DFMT) that implanted on the ossicular chain of the human temporal bone and physical ear model. Through the experiments results, the relationship between displacement of stapes and sound pressure by tympanic membrane was investigated.

Estimation of Net Radiation in Three Different Plant Functional Types in Korea (한국의 세 개의 다른 식생기능형태에서의 순복사 추정)

  • Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Net radiation ($R_N$) is a driving force of biological and physical processes between the surface and the atmosphere and its knowledge is critical to weather forecasting and water resource management. The measurement of $R_N$ is, however, scarce and it is typically estimated from an empirical relationship. This study presented two different methods of $R_N$ estimation over three major plant functional types (i.e., a deciduous forest, a coniferous forest, and a farmland) in Korea. One is a linear regression method between $R_N$ and solar radiation and the other is a radiation balance method. The two methods were examined using the data collected in 2008 at the three sites. Based on the linear regression method over a year, $R_N$ was 70% of the incoming shortwave radiation ($R_S{\downarrow}$) for a deciduous forest, 79% for a coniferous forest, and 64% for a farmland, indicating that the relationship was plant functional type-specific. For the radiation balance method, the inclusion of longwave radiation component slightly improved $R_N$ estimations. Overall, there was a good agreement between the observed and the estimated $R_N$ from both methods, indicating a reliable applicability of the two methods in estimating $R_N$.

Cell Patterning on Various Substrates Using Polyelectrolyte Multilayer and Microstructure of Poly(Ethylene Glycol) (다양한 기판 위에서 고분자 전해질 다층 막과 폴리에틸렌글리콜 미세 구조물을 이용한 세포 패터닝 방법)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Choi, Ho-Suk;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1100-1106
    • /
    • 2008
  • In this study, we presented rapid and simple fabrication method of functionalized surface on various substrates as a universal platform for the selective immobilization of cells. The functionalized surface was achieved by using deposition of polyelectrolyte such as poly(allyamine hydrochloride) (PAH), poly(diallyldimethyl ammonium chloride) (PDAC), poly(4-ammonium styrene sulfonic acid) (PSS), poly(acrylic acid) (PAA) and fabrication of poly(ethylene glycol) (PEG) microstructure through micro-molding in capillaries (MIMIC) technique on each glass, poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(dimethyl siloxane) (PDMS) substrate. The polyelectrolyte multilayer provides adhesion force via strong electrostatic attraction between cell and surface. On the other hand, PEG microstructures also lead to prevent non-specific binding of cells because of physical and biological barrier. The characteristic of each modified surface was examined by using static contact angle measurement. The modified surface onto several substrates provides appropriate environment for cellular adhesion, which is essential technology for cell patterning with high yield and viability in the micropatterning technology. The proposed method is reproducible, convenient and rapid. In addition, the fabrication process is environmentally friendly process due to the no use of harsh solvent. It can be applied to the fabrication of biological sensor, biomolecules patterning, microelectronics devices, screening system, and study of cell-surface interaction.

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

Proposition of a Vibration Based Acceleration Sensor for the Fully Implantable Hearing Aid (완전 이식형 보청기를 위한 진동 기반의 가속도 센서 제안)

  • Shin, Dong Ho;Mun, H.J.;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • The hybrid acoustic sensor for implantable hearing aid has the structure in which a sound pressure based acoustic sensor (ECM) and a vibration based acceleration sensor are combined. This sensor combines the low frequency sensitivity of an acoustic sensor with the high frequency sensitivity of an acceleration sensor, allowing the acquisition of a wide range of sound from low to high frequency. In this paper, an acceleration sensor for use in a hybrid acoustic sensor has been proposed. The acceleration sensor captures the vibration of the tympanic membrane generated by the acoustic signal. The size of the proposed acceleration sensor was determined to diameter of 3.2 mm considering the anatomical structure of the tympanic membrane and the standard of ECM. In order to make the hybrid acoustic sensor have high sensitivity and wide bandwidth characteristics, the aim of the resonance frequency of the acceleration sensor is to be generated at about 3.5 kHz. The membrane of the acceleration sensor derives geometric structure through mathematical model and finite element analysis. Based on the analysis results, the membrane was implemented through a chemical etching process. In order to verify the frequency characteristics of the implemented membrane, vibration measurement experiment using external force was performed. The experiment results showed mechanical resonance of the membrane occurred at 3.4 kHz. Therefore, it is considered that the proposed acceleration sensor can be utilized for a hybrid acoustic sensor.

The Crystal Structure of Nicotine Dihydroiodide (Nicotine Dihydroiodide의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.134-141
    • /
    • 1965
  • Crystals of nicotine dihydroiodide, are orthorhombic with space group $p2_12_12_1$.The unit cell of dimensions a=7.61, b=11.01, e=17.27${\AA}$, contains four formula units. The structure has been determined by X-ray diffraction method and has been refined to give the R-index, ${\sum}{\mid}{\mid}F_{\circ}{\mid}-{\mid}F_c{\mid}{\mid}{\div}{\sum}{\mid}F_{\circ}{\mid}$, of 0.16 and 0.14 for $F_{okl}\;and\;F_{hol}$ respectively.The mean lengths of C-C and C-N bonds in pyridine ring are 1.40 and $1.35{\AA}$ and those in pyrolidine ring 1.56 and $1.48{\AA}$ respectively, though accurate measurement of bond length has not been attempted. The six atoms in the pyridine ring are coplanar and on the other hand $C_6,\;C_7,\;C_8$ and $N_2$ atoms in pyrrolidine ring form a plane within accuracy of the analysis, and $C_9$ atom is distant $0.22{\AA}$ out of the plane consist of $C_6,\;C_7,\;C_8$ and $N_2$ aoms. The normals to the two planes form an angle of $94^{\circ}$ with each other. Iodine atom is distant $3.55{\AA}$ from nitrogen atom in pyridine ring and the other iodine atom $3.58{\AA}$ from nitrogen atom in pyrrolidine ring, so that the nitrogen and iodine atoms are firmly linked.It seems that the only forces binding nicotine dihydroiodide molecules together in the crystal are Van der Waals forces.

  • PDF

Preparation of Biopolymer coated Magnetite And Magnetic Biopolymer Microsphere Particles for Medical Application (의학적 응용을 위한 생체 고분자로 피복 된 자성 나노 입자와 미소구체의 제조)

  • Ko, Sang-Gil;Cho, Jun-Hee;Ahn, Yang-kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2006
  • We have synthesized uniform nanometer sized magnetite particles using chemical coprecipitation technique through a sonochemical method with surfactant such as oleic acid. Magnetite phase nanoparticles could be observed from X-ray diffraction. Magnetite nanoparticles is surface phase morphology and biopolymer-microspheres for Application Medical. Magnetite nanoparticles coated biopolymer. Atomic Force Microscope (AFM) was used to image the coated nanoparticles. Magnetic colloid suspensions containing particles with sodium oleate, chitosan and $\beta$-glucan have been prepared. The morphology of the magnetic biopolymer microsphere particles were characterized using optical microscope. Magnetic hysteresis measurement were performed using a superconducting quantum interference device (SQUID) magnetometer at room temperature to investigate the magnetic properties of the biopolymer microspheres and magnetite coated biopolymer including magnetite nanoparticles. Magnetic Resonance (MR) imaging was used to investigate biopolymer coated nanoparticles and biopolymer microspheres.