• 제목/요약/키워드: Force Distribution

검색결과 1,958건 처리시간 0.027초

원통형 물체 쥐기 시 건강한 성인과 척수마비 환자의 최대 손가락 끝 힘 분포 비교 (Comparison of Maximum Fingertip Force Distribution in Cylindrical Grasping Between Healthy Adults and Patients With Spinal Cord Injury)

  • 황지선;이재선;황선홍
    • 한국전문물리치료학회지
    • /
    • 제29권1호
    • /
    • pp.28-36
    • /
    • 2022
  • Background: It is known that hand strength and fingertip force are used as an indicator of muscle strength and are also highly related to the various chronic symptoms and even lifespan. To use the individual fingertip force (IFF) as a quantitative index for clinical evaluation, the IFF should be measured and analyzed with various variables from various subjects, such as the normal range of fingertip force and the difference in its distribution by disease. Objects: We tried to measure and analyze the mean maximum IFF distribution during grasping a cylindrical object in healthy adults and patients with spinal cord injury (SCI). Methods: Five Force-sensitive resistor (FSR) sensors were attached to the fingertips of 24 healthy people and 13 patients with SCI. They were asked to grip the object three times for five seconds with their maximum effort. Results: The mean maximum IFF of the healthy adult group's thumb, index, and middle finger was similar statistically and showed relatively larger than IFF of the ring and small finger. It is a 3-point pinch grip pattern. All fingertip forces of patients with SCI decreased by more than 50% to the healthy group, and their IFF of the middle finger was relatively the largest among the five fingertip forces. The cervical level injured SCI patients showed significantly decreased IFFs compared to thoracic level injured SCI patients. Conclusion: We expect that this study results would be helpful for rehabilitation diagnosis and therapy goal decision with robust further study.

힘다각형선도법을 이용한 세롤에 의한 파워스피닝공정의 해석 (Analysis of the Three-Roll Power Spinning Process by using the Method of Force Polygon Diagram)

  • 유동진
    • 한국정밀공학회지
    • /
    • 제2권3호
    • /
    • pp.47-58
    • /
    • 1985
  • The study is concerned with the analysis of the required loads and torque in the Three-Roll Power Spinning Process by using the Method of Force Polygon Diagram. Experiments are carried out using pure lead billets at room temperature. The radial force, the axial force and the torque occurring during the process are calculated theoretically and are compared with the experimental data. An approximate load distribution is known by the Force Polygon Diagram.

  • PDF

판 변형 정밀 예측을 위한 폭방향 압하력 및 tension 분포예측 모델 개발 (Roll force and tension distribution along the width for the precision prediction of strip deformation)

  • 김용기;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.153-162
    • /
    • 2004
  • The force profile from strip to work roll is very important factor in deformation of roll. But It is not easy to predict the profile because strip crown affect its tendency. From finite element method result, some assumptions can be obtained and the roll force profile model is derived. Also the tension profile and lateral strain are derived. The prediction accuracy of the proposed model is examined through comparison with finite element calculation result.

  • PDF

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권2호
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.

차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략 (Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution)

  • 정승환;이형철
    • 한국자동차공학회논문집
    • /
    • 제23권6호
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.

Self-Organization of Multi-UAVs for Improving QoE in Unequal User Distribution

  • Jeon, Young;Lee, Wonseok;Hoang, Tran Manh;kim, Taejoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1351-1372
    • /
    • 2022
  • A self-organizing multiple unmanned aerial vehicles (multi-UAVs) deployment based on virtual forces has a difficulty in ensuring the quality-of-experience (QoE) of users because of the difference between the assumed center for users in a hotspot and an actual center for users in the hotspot. This discrepancy is aggravated in a non-uniform and mobile user distribution. To address this problem, we propose a new density based virtual force (D-VF) multi-UAVs deployment algorithm which employs a mean opinion score (MOS) as a metric of QoE. Because MOS is based on signal-to-noise ratio (SNR), a sum of users' MOS is a good metric not only to secure a wide service area but to enhance the link quality between multi-UAVs and users. The proposed algorithm improves users' QoE by combining virtual forces with a random search force for the exploration of finding multi-UAVs' positions which maximize the sum of users' MOS. In simulation results, the proposed deployment algorithm shows the convergence of the multi-UAVs into the position of maximizing MOS. Therefore, the proposed algorithm outperforms the conventional virtual force-based deployment scheme in terms of QoE for non-uniform user distribution scenarios.

ECC를 이용한 키분배 프로토콜 (A Key Distribution Protocol based on ECC)

  • 이준;김인택
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.142-147
    • /
    • 2007
  • In this paper we suggest a key distribution protocol based on ECC. This could be apply to multi connection to a sensitive system on a computer network. SSL based on RSA is generally used as a key distribution protocol. By reducing two times encryption/decryption procedures to one time and using ECC algorithm this protocol is faster than SSL. Analyzing the key distribution time on a normal PC experiment, we show that this could be practically used in real world without a hardware implementation.

telescope형 및 Clasp형 유지장치를 이용한 국소의치 지지조직의 응력분포에 관한 삼차원 유한요소법적 연구 (A STUDY ON THE STRESS DISTRIBUTION OF ABUTMENT TEETH AND RESIDUAL RIDGE AREA BETWEEN TELESCOPIC AND CLASP TYPE RPD BY FEM METHOD)

  • 곽재영;김광남;장익태;허성주
    • 대한치과보철학회지
    • /
    • 제37권1호
    • /
    • pp.104-126
    • /
    • 1999
  • The purpose of this study was to compare and evaluate the stress distribution and displacement developed in the abutment teeth and residual ridge area by madibular unilateral distal extension removable partial denture with 2 different retainer designs. The retainers on right and left canine and right 2nd molar were Alters clasp in one model and telescopic crown in the other model. The stress distribution of abutment teeth and residual ridge area on two model were compared and analyzed with 3-dimensional finite element method. 150N and 400N forces were applied vertically, 30 degree and horizontally on the central fossa area of left 1st molar of the removable partial denture, and then stress distribution patterns were analyzed and compared. The results were as follows 1. As the magnitude and angulation of applied force were increased, the magnitude of stress on the right and central residual ridge area and the right canine of the telescopic type increased and comparing to those of the Alters clasp type. 2. As the magnitude and angulation of applied force were increased, the mesial direction of displacement on the right residual ridge area and the right tooth of the telescopic type increased and the distal direction of displacement on left residual ridge area and the left canine increased comparing to those of Akers clasp type. 3. As the vertical force was applied, the distal direction of the displacement of the right tooth were greater and that of the left canine was smaller and the upward displacement of the right canine was greater in telescopic partial denture than those of Akers clasp type. 4. As the 30 degree force was applied, the mesial direction of the displacement of the right tooth were greater and the distal direction of the displacement of the left canine was smaller and the upward displacement of the right canine was greater in telescopic partial denture than those of Akers clasp type. In the horizontal force the results were same in right area tooth but the distal direction of displacement was greater in left canine. 5. In both removable partial dentures, as the magnitude and degree of force were increased, the stress and displacement were increased. The compressive force was dominative than the ten sile force. 6. In both removable partial dentures, the magnitude of stress was greater on mucosal tissue area than that of the alveolar bone area on distal extension residual ridge area but the result was reversed on anterior residual ridge area. The displacement was always greater on mucosal tissue area than that of alveolar bone area.

  • PDF

절삭공구의 열변형 오차 및 절삭력 변형 오차에 관한 연구 (Study of the thermal deflection error and the deflection error induced by the cutting force)

  • 오명석;윤인준;백대균
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.373-378
    • /
    • 2002
  • This paper presents a method to predict tool deflection induced by the thermal distribution and the cutting force using FEM in milling operation. The thermal distribution of cutting tool was predicted using FEM after measuring the temperature of the end of tool and of the tool holder. The thermal deflection of cutting tool was predicted using FEM as well. The tool deflection induced by the cutting force was analyzed with the solid model of cutting tool. An end mill tool caused most of tool deflection comparing to tool holder. Most of thermal deflection came from Z-direction and most of tool deflection induced by the cutting force came from X and Y direction. Precision cutting will be accomplished when tool locations are generated considering the thermal deflection of cutting tool and the tool deflection induced by the cutting force in CAD/CAM.

  • PDF