• Title/Summary/Keyword: Force Distribution

Search Result 1,958, Processing Time 0.029 seconds

Failure Data Analysis of J79 Engine Transfer Gearbox for Aircraft Maintenance Planning (항공기 정비계획을 위한 J79 엔진 Transfer Gearbox의 고장데이터 분석)

  • Choi, Jae-Man;Yang, Seung-Hyo;Hwang, Young-Ha;Son, Ik-Sang;On, Yong-Sub;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.781-787
    • /
    • 2010
  • Forecasting possible failure characteristics is very important in maintenance planning because it helps in predicting any future failures and determining the optimum replacement interval. This paper examines the time.to-failure distribution of the transfer gearbox of a J79 engine by using a probability plotting technique which is one of the most convenient techniques for reliability analysis. Various probability distributions are evaluated for determining the suitable probability distribution of the failure data of the transfer gearbox, and the resulting correlation coefficient indicates that failure data have a lognormal distribution. The expected number of unscheduled maintenance actions and the optimum replacement interval for various values of cost ratios are determined.

Load Distribution Factors for Determinating Shear Force in Steel Box Girder Bridges (강상자형교의 전단력 산정을 위한 하중분배계수)

  • Song, Jea Ho;Kim, Min Wook;Kim, Il Su;Oh, Jin Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.88-97
    • /
    • 2011
  • For Korean design provisions are not equipped for skewed steel box girder bridges, when American provisions are adopted, load distribution factors different from real behavior are determinated. Furthermore the possibility of over or under estimated bridge design involves. The aim of this study is to provide more rational load distribution factor formulas based on real behavior for shear at obtuse corner of skewed steel box girder bridges. In order to accomplish the aim finite element analysis for a variety of skewed steel box girder bridge structural models is carried out, and each parameters degree of influence on wheel load distribution factors of skewed steel box girder bridges are analyzed. Then multiple regression analysis is fulfilled in order to propose formulas for determinating shear force load distribution factor of skewed steel box girder bridges.

Distalization pattern of whole maxillary dentition according to force application points

  • Sung, Eui-Hyang;Kim, Sung-Jin;Chun, Youn-Sic;Park, Young-Chel;Yu, Hyung-Seog;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.45 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • Objective: The purpose of this study was to observe stress distribution and displacement patterns of the entire maxillary arch with regard to distalizing force vectors applied from interdental miniscrews. Methods: A standard three-dimensional finite element model was constructed to simulate the maxillary teeth, periodontal ligament, and alveolar process. The displacement of each tooth was calculated on x, y, and z axes, and the von Mises stress distribution was visualized using color-coded scales. Results: A single distalizing force at the archwire level induced lingual inclination of the anterior segment, and slight intrusive distal tipping of the posterior segment. In contrast, force at the high level of the retraction hook resulted in lingual root movement of the anterior segment, and extrusive distal translation of the posterior segment. As the force application point was located posteriorly along the archwire, the likelihood of extrusive lingual inclination of the anterior segment increased, and the vertical component of the force led to intrusion and buccal tipping of the posterior segment. Rotation of the occlusal plane was dependent on the relationship between the line of force and the possible center of resistance of the entire arch. Conclusions: Displacement of the entire arch may be dictated by a direct relationship between the center of resistance of the whole arch and the line of action generated between the miniscrews and force application points at the archwire, which makes the total arch movement highly predictable.

A STUDY ON THE PATTERN OF MOVEMENT DURING RETRACTION OF MAXILLARY CENTRAL INCISOR BY FINITE ELEMENT METHOD (상악 중절치 후방 이동시의 이동양상에 관한 유한요소법적 연구)

  • Jang, Jae Wan;Sohn, Byung Wha
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.617-634
    • /
    • 1991
  • The retraction of anterior teeth is one of the fundamental methods in orthodontic treatment and a proper position and angulation of anterior teeth after the retraction are very important for esthetics, stability, and function of teeth. In this research we analyzed, by Finite Element Method, the stress distribution on the periodontal ligament according to the variation of force and moment applied on the crown and predict the pattern of movement of maxillary central incisor. At the same time, the amount of force and moment caused by activation of the loop which was used for retraction of maxillary central incisor was analyzed by Finite Element Method. We observed the following results: 1) We could control the stress distribution on the periodontal ligament by proper moment/force ratio on maxillary right central incisor and predict the pattern of movement of maxillary right central incisor. 2) The amount of stress on the periodontal ligament as well as the moment/force ratio demanded by each pattern of movement increased as the destruction of alveolar bone was worse. 3) The moment/force ratio demanded by each pattern of movement decreased as the angle between the maxillary central incisor and occlusal plane decreased. 4) The force with the open loop was shown to be large compared to that with the closed loop. Also, the force with the helix decreased by 30% compared to that without the helix. 5) Under the same conditions we observed a larger moment/force ratio when the open loop and/or the helix were used.

  • PDF

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

FINITE EIEMENT ANALYSIS OF STRESS DISTRIBUTIONS OF DENTIN BY POST AND CORE SYSTEMS (하악 소구치용 post and core systems의 치근 내부 응력분산 효과에 대한 유한요소법적 연구)

  • Hong, Hyun-Ja;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.397-412
    • /
    • 1995
  • The purpose of this study was to analyze the stress distribution in the dentin and post structures by the various post core materials and the amount of remaining coronal tooth structures. The 2-dimensional finite element models of mandibular 2nd premolars was divided into seven types according to the various amount of remaining coronal tooth structures. All types were modeled using equal length, diameter and shape of the post. 2 types of post and core materials were used : 1) cast gold post and core 2) stainless steel post and compsite resin core 10 Newton force was applied as follows 1) vertical force on occlusal fossa 2) $45^{\circ}$ oblique force on buccal surface of buccal cusp tip The results were as follows : 1. There was no apparent difference in the pattern of stress distribution according to the amount of remaining coronal tooth structure. 2. There was no apparent difference in the pattern of stress distribution within the dentin according to the post and core materials. A cast gold post and core generated lower dentin stress than a stainless steel post and resin core. 3. Max. dentinal stress resulting from vertical force was observed in the lingual side of dentin around the crown margin.This stress resulting from oblique force was observed in the lingual root surface of alveolar bone crest level.

  • PDF

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

On the Wave Drift Forces Acting on the Fixed 2-Dimensional Cylinder (고정 2차원 주상분에 작용하는 파랑표류력)

  • Hong, Seok-Won;Lee, Sang-Mu;Yang, Seung-Il
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.135-144
    • /
    • 1985
  • A method is described to obtain the first order force and second order steady force on the fixed two dimensional submerged or semisubmerged cylinders at infinite depth of water due to regular waves. The first order diffraction wave velocity potential which describes the flow diffracted by a body is obtained numerically using source distribution method on the mean wetted surface. And a technique to remove the irregular frequency phenomena of the source distribution method is also applied. The second order steady force is calculates by means of direct integration of the pressures on the body as derived from the first order velocity potential and is also computed by means of reflection wave height derives from momentum conservation theory. The results are compared with those of published works, and show good agreement.

  • PDF

Effect of corner modifications on 'Y' plan shaped tall building under wind load

  • Sanyal, Prasenjit;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.245-260
    • /
    • 2020
  • Wind load and responses are the major factors which govern the design norms of tall buildings. Corner modification is one of the most commonly used minor shape modification measure which significantly reduces the wind load and responses. This study presents a comparison of wind load and pressure distribution on different corner modified (chamfered and rounded) Y plan shaped buildings. The numerical study is done by ANSYS CFX. Two turbulence models, k-epsilon and Shear Stress Transport (SST), are used in the simulation of the building and the data are compared with the previous experimental results in a similar flow condition. The variation of the flow patterns, distribution of pressure over the surfaces, force and moment coefficients are evaluated and the results are represented graphically to understand the extent of nonconformities due to corner modifications. Rounded corner shape is proving out to be more efficient in comparing to chamfered corner for wind load reduction. The maximum reduction in the maximum force and moment coefficient is about 21.1% and 19.2% for 50% rounded corner cut.

A Study on the Contact Force and Temperature Distribution of Lip Seals (립실의 접촉력 및 온도분포 해석에 관한 연구)

  • 김청균;전인기;김종억
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1559-1566
    • /
    • 1994
  • Using the finite element method, the contact force, contact band width and temperature distribution of lip seals analyzed for the interference including some nonlinearities such as material nonlinearity, geometrical nonlinearity and nonlinear contact boundary condition. The calculated results showed that the contact stress concentrated on the contact zone between the garter spring and the rubber toward the flex side, the contact edge of lip seals. The high contact forces due to the increased interference separate the sealing gap between the lip edge and the rotating shaft. This may lead to leak the sealed oil.