• 제목/요약/키워드: Force Display

검색결과 378건 처리시간 0.022초

Wafer 반송용 End-Effector의 FEM 해석 및 파지력 제어에 관한 연구 (A Study on the FEM Analysis and Gripping Force Control of End-Effector for the Wafer Handling Robot System)

  • 권오진;최성주;이우영;이강원;박원규
    • 반도체디스플레이기술학회지
    • /
    • 제2권3호
    • /
    • pp.31-36
    • /
    • 2003
  • On this study, an E.E(End-Effector) for the 300 mm wafer transfer robot system is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor controlled by microchip. To design, relationship between the gripping force and the wafer deformation is analyzed by FEM. By analytic results, the gripping force for 300 mm wafer is confirmed as 255~274 gf. From experimental results on gripping force, repeatable position accuracy and gripping cycle times in a wafer cleaning system, we confirmed that the suggested E.E was well designed to satisfiy on the required performance for 300 mm wafer transfer robot system.

  • PDF

엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화 (Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석 (Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구 (A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis)

  • 이재영;장경민;민동균;강재규;성기현;김혜동
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

콜레스테릭 액정의 Planar 배열과 선택 반사 특성에 관한 연구 (Study on Planar Orientation and Selective Reflection of Cholesteric Liquid Crystals)

  • 정갑하;서인선;이몽룡;최석원;송기국
    • 폴리머
    • /
    • 제34권3호
    • /
    • pp.242-246
    • /
    • 2010
  • 선택 반사를 보이는 콜레스테릭 액정의 planar 배열과 선택적 반사 효율과의 연관성에 대하여 FTIR spectroscopy를 이용하여 정량적으로 조사하였다. Cholesteric liquid crystal(CLC) 내 planar 배열이 잘 유도될수록 선택 반사율이 높아짐을 알 수 있었고, 배향막을 사용하지 않고 shear force 효과에 의해서만 planar 배열을 유도할 수 있었지만 완전한 planar 배열을 유도하기 위해서는 배향막을 사용하는 것이 효과적이었다.

비접촉 평판 디스플레이 이송장치에서 양력을 고려한 평판 디스플레이의 처짐 해석 (Flat Panel Display Deflection Analysis Considering Lift Force in Non-Contact Flat Panel Display Conveyer System)

  • 황성현;최현창;노태정;손태영;박범석
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.451-457
    • /
    • 2008
  • Flat Panel Display(FPD) is widely used a video display terminals to consumer products of LCD and PDP. The contamination and damage were affected by using the previous contact conveyor's method. In this paper, it analyzes the FPD deflection to develop the non-contact FPD transfer process using lift force. Each conveyor's equipment is called a horizontal conveyor, vertical conveyor and robot pick-up equipment. As result of an analysis of FPD panel's deflection, a robot pick-up equipment has performed according to under the present conditions like panel's weight and loaded glass to move FPD panel from one place to other places properly. Results of the analysis showed 0.474 mm, 0.424 mm and 1.237 mm. Those values are lower than a predicted optimum values : 2 mm for both horizontal and vertical conveyers; 5 mm for robot pick-up equipment. Therefore, those results verify each equipment have safety and reliability.

Mechanical Modeling of Rollable OLED Display Apparatus Considering Spring Component

  • Ma, Boo Soo;Jo, Woosung;Kim, Wansun;Kim, Taek-Soo
    • 마이크로전자및패키징학회지
    • /
    • 제27권2호
    • /
    • pp.19-26
    • /
    • 2020
  • Flexible displays have been evolved into curved, foldable, and rollable as the degree of bending increases. Due to the presence of brittle electrodes (e.g. indium-tin oxide (ITO)) that easily cracked and delaminated under severe bending deformation, lowering mechanical stress of the electrodes has been critical issue. Because of this, mechanical stress of brittle electrode in flexible displays has been analyzed mostly in terms of bending radius. On the other hand, in order to make rollable display, various mechanical components such as roller and spring are needed to roll-up or extend the screen for the rollable display apparatus. By these mechanical components, brittle electrode in the rollable display is subjected to the excessive tensile stress due to the retracting force as well as the bending stress by the roller. In this study, mechanical deformation of rollable OLED display was modeled considering boundary conditions of the apparatus. An analytical modeling based on the classical beam theory was introduced in order to investigate the mechanical behavior of the rollable display. In addition, finite element analysis (FEA) was used to analyze the effect of mechanical components in the apparatus on the brittle electrode. Furthermore, a strategy for improving the mechanical reliability of the rollable display was suggested through controlling the stiffness of adhesives in the display panel.

Intelligent Load Distribution of Two Cooperating Robots for Transporting of Large Flat Panel Displays

  • Cho, Hyun-Chan;Kim, Doo-Yong
    • 반도체디스플레이기술학회지
    • /
    • 제4권2호
    • /
    • pp.25-32
    • /
    • 2005
  • This paper proposes a method for the intelligent load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required Joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general, the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning; if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force (actors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

선형 모터에서 힘리플 제거를 위한 Hybrid 제어기의 설계 (Design of a Hybrid Controller to Eliminate the Force Ripple in the Linear Motor)

  • 김경천;김정재;최영만;권대갑
    • 반도체디스플레이기술학회지
    • /
    • 제7권1호
    • /
    • pp.17-22
    • /
    • 2008
  • The proposed hybrid controller consists of PID controller, feedforward controller and RLSE (Recursive Least Square Estimating) adaptive controller to compensate the force ripple that is periodic function of position in a linear motor. The modeling of force ripple is divided into the current-dependent and current-independent components. The current independent components never change as the current into the linear motor changes. On the other hand, the current-dependent components change as current varies when the velocity and load of the linear motor change. The proposed controller can compensate both force ripples. The feedforward controller compensates the current-independent components and the RLSE adaptive controller compensates the current-dependents components. We verified the performance of the controller by simulation and experiments.

  • PDF

DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화 (Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE)

  • 권준환;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.