• Title/Summary/Keyword: Force Display

Search Result 380, Processing Time 0.021 seconds

A research about micro size polymer bead injecting process based on electrostatic force (정전기력 기반의 마이크로 사이즈 폴리머 비드 주입 공정 연구)

  • Yang, Bong-Su;Yang, Sung-Wook;Ko, Jung-Bum;Choi, Kyung-Hyun;Doh, Yang-Hoi
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2016
  • This research proposal is based on a novel non-contact technique of micro-sized bead injection process for fabrication of electronic paper display. This non-contact injection process is based on the principle of electrostatic force and uses micro-sized metal-coated beads dispersed in a solution. The dispersion retention times of three different solutions with viscosities of 10 cps, 100 cps, and 1000 cps were measured by optical equipment showing the retention times of 5 mins, 10 mins, and 30 mins respectively. The dispersion retention rate dropped as the time passed. The dispersion retention characteristic of 1000 cps solution was more stable as compared to those of 10 cps and 100 cps meaning that higher viscosity has better retention properties. The experimental results of bead injection at different viscosity levels of the solution were also measured and a stable injection result was achieved by using 1000 cps solution. This results show that stable injection is dependent on solution viscosity and dispersion.

A Data Acquisition System based upon a Single-board Microcomputer (단일보드 마이크로 컴퓨터를 이용한 자료(資料) 수집장치(蒐集裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.221-228
    • /
    • 1989
  • A data acquisition system was designed to measure the forces on a rolling coulter in three coordinated directions, angular velocity of the coulter and travel speed of a soil bin. The data acquisition system consisted of a dynamometer, speed transducers, a signal conditioner, an inter-face board, an Aim-65 microcomputer and a digital data recorder. Strain gages were attached on the surface of the dynamometer and connected to form three Wheatstone bridges, which measure the draft force, the vertical force and the side force on the coulter. An interaction among three dimensional forces was found during the calibration. A matrix procedure was used to correct the forces for this interaction. Rotary shaft encoders were mounted on the coulter and on the soil bin drive to measure the angular velocity of the coulter and the travel speed of the soil bin. The angular velocity and the travel speed were computed by counting the number of pulse signals from the rotary shaft encoders every 0.2 second. The digital signals from the rotary shaft encoders were connected to counters and the analog signals from the dynamometer, after passing through the signal conditioner, were connected to the A/D converter. The microcomputer programs, written in assembly language, were developed to read signals from the transducers, convert them to actual unit, display them upon request and record them on a sigital tape every 0.2 second.

  • PDF

Design of an Electromagnetically-driven Micromirror Through the Coupled Physics Analyses (복합장 해석에 의한 전자력 구동방식의 마이크로미러 설계)

  • Han, Seung-Oh;Kim, Byoung-Min;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.380-384
    • /
    • 2010
  • A micromirror for a laser display system actuated by the electromagnetic force induced by the surface coil and the permanent magnet was designed and analyzed through the coupled physics analyses incorporating the electromagnetics, mechanics, and electrothermal analysis because the mechanical rotation of the micromirror is driven by the electromagnetic driving force. The proposed micromirror has two torsion beams to sustain the mirror plate which has surface coils on the top and the two permanent magnets exists on both sides of the micromirror for an external magnetic field source. The designed micromirror has the resonant frequency of 3.82kHz. When the magnetic field of the permanent magnet is 0.4T, the coil has 4 turns, and the current density of coil is 3.6A/$mm^2$, the estimated z axis displacement of the mirror plate edge is 0.23mm which corresponds to the rotation angle of $14.2^{\circ}$. When considering the joule heating in the current-carrying coil, the maximum temperature of the mirror plate is obtained as 300.045K, which induces the negligible changes in the rotation angle and the resistance of the coil.

Soft Magnetic Properties of CoNbZr amorphous Films with Pd addition

  • Song, J.S,;Wee, S.B,
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.54-58
    • /
    • 2002
  • The present paper is to investigate the phase stability and soft magnetic properties of amorphous CoNbZr films when Pd is added as a substitution for CoNbZr alloys. The films were prepared by a RF magnetron sputtering method. The CoNbZrPd films deposited on Si wafers exhibited amorphous structures being independent upon the amount of Pd added in the films. On the addition of 4.34% Pd, the excellent soft magnetic characteristics of the films were observed with a coercive force of 0.54 Oe and an anisotropy field of 11 Oe, whereas a coercive force of 1 Oe and an anisotropy field of 3.5 Oe were shown in the film without the addition of Pd. The increased anisotropy field and low coercive force of the films may be attributed to the occupancy of Pd in the preferred sites parallel to the external magnetic field applied on the deposition process. A permeability of about 1100 was kept constant in the operation frequency ranging up to 100 MHz, which can be explained by the Landau-Lifshitz formula.

  • PDF

The Real-Time Virtual Environment Control Using Haptic Interface System (촉각시스템을 이용한 실시간 가상환경제어)

  • Kang, Won-Chan;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we propose the haptic system for the real-time virtual environment-control, which controls the sense of sight, hearing and touch. In order to maintain the stable haptic system in this study, we apply the proxy force rendering algorithm and the real-time graphic deformation algorithm based on the FEM. The applied proxy algorithm makes the system possible to be more stable and prompt with a virtual object. Moreover, the haptic rendering algorithm is applied to work out a problem that the tactual transaction-period is different from the graphic transaction- period. The graphic deformation algorithm is developed in the real-time using the deformed FEM. To apply the FEM, a deformed material-model is produced and then the graphic deformation with this model is able to force. Consequently, the graphic rendering algorithm is deduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time. Applying this system to the PC, we prove that it is possible to deform the graphics and transact the haptic. Finally we suggest the variable simulation program to show the efficiency of this system.

NREH: Upper Extremity Rehabilitation Robot for Various Exercises and Data Collection at Home (NREH: 다양한 운동과 데이터 수집이 가능한 가정용 상지재활로봇)

  • Jun-Yong Song;Seong-Hoon Lee;Won-Kyung Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • In this paper, we introduce an upper extremity rehabilitation robot, NREH (NRC End-effector based Rehabilitation arm at Home). Through NREH, stroke survivors could continuously exercise their upper extremities at home. NREH allows a user to hold the handle of the end-effector of the robot arm. NREH is a end-effector-based robot that moves the arm on a two-dimensional plane, but the tilt angle can be adjusted to mimic a movement similar to that in a three-dimensional space. Depending on the tilting angle, it is possible to perform customized exercises that can adjust the difficulty for each user. The user can sit down facing the robot and perform exercises such as arm reaching. When the user sits 90 degrees sideways, the user can also exercise their arms on a plane parallel to the sagittal plane. NREH was designed to be as simple as possible considering its use at home. By applying error augmentation, the exercise effect can be increased, and assistance force or resistance force can be applied as needed. Using an encoder on two actuators and a force/torque sensor on the end-effector, NREH can continuously collect and analyze the user's movement data.

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube

  • Choi, Kyu-Min;Kwon, Chan-Ho;Kim, Hong-Lae;Hwang, Hyon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.911-916
    • /
    • 2012
  • Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.

Measurement of postural instability before and after experiencing a VR system by using a force platform (힘판을 이용한 가상현실 체험 전후 신체동요의 측정)

  • 박재희;김영윤;김은남;김현택;고희동
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.45-49
    • /
    • 2002
  • Recently, virtual environment systems are used in various application fields such as industry, medicine, and training and education. However, the negative effect, cybersickness including nausea, visual fatigue, and disorientation, could be happened while using VR systems. It prevents VR system from spreading much more. To control the cybersickness, first of all, the objective measurement method should be established. As one of alternative methods, the postural instability could be a measure of cybersickness. In this study, 45 participants' postural sway before and after experiencing a H driving simulator was measured by using a force platform. Especially, we examined if two factors, motion and feedback, could affect on the postural instability The results showed the postural instability slightly increased after experiencing the VR driving simulator. For the factors, the providing of motion synchronized to visual display showed statistical significant decrease in postural sway along lateral side. To check the effectiveness of postural instability as a cybersickness measure, further studies are needed.

  • PDF

A Study on the Effects of Concave Shaping in Improving Contract Pressure for Planar Array Connector Terminal Pins (평면배열 커넥터 터미널 핀에 오목형상 부여가 접압력 향상에 미치는 영향에 관한 연구)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.36-40
    • /
    • 2016
  • Connectors transmit electric signals to different parts in compact mobile display products. As products that apply this have become lightweight and smaller in size, there are growing demands for smaller and more integrated connectors, which are internal parts of the products. As a measure to address these demands, there is the planar array connector that minimizes the part by arranging the single-direction BTB connectors to two directions. As connectors become smaller in size and more highly integrated, maintaining intensity to prevent defects during impact and maintaining adhesive force to smoothly transmit electric signals are growing in importance. Thus, in order to identify the impact of concave shaping on improving adhesive power in connector terminal pins as a method to increase the connecting power of planar array connector terminal pins, this study predicted and examined the concave shaping method, number of concave shapes, and the adhesive power according to the size of the concave shape through CAE. For concave shaping, the model that added concave shaping towards the lower part of the connector terminal pin and added spokes for the area pressed down by the concave shaping was 0.74 N, showing increased adhesive force compared to existing models. Furthermore, when applying two concave shaping, rather than just one, there was a tendency for adhesive force to increase. In the case of adhesive power trends according to the size of the concave shaping, adhesive power increased and the width of the concave shape decreased, and the biggest adhesive force trends were shown when the concave shaping depth was 0.01mm.

Development of high-power haptic vibration actuator module and interface based on bidirectional electrostatic force driving structure (양방향 정전기력 구동 구조에 기반한 고출력 햅틱 진동 액추에이터 모듈 및 인터페이스 개발)

  • Kim, Jae-Ik;Lee, Jae-Kyung;Park, Young-Hwan;Seo, Jeong-Tae;Yang, Tae-Heon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.662-667
    • /
    • 2021
  • Vibrotactile feedback is a major function of the latest touch displays, which greatly improves the user's operability and immersion when interacting with the interface on the screen. In this study, we propose a vibrotactile actuator suitable for mounting on the back side of a mid- to large-sized display because it can generate a strong vibration output by applying an electrostatic force-based mechanism and can be manufactured in a thin flat panel type. The proposed actuator was developed in a structure capable of amplifying the vibration force by alternating up and down with electrostatic force by the upper and lower electrodes that are spaced apart from the electrically grounded mass suspended from a radial leaf spring. As a result of the performance evaluation, the developed bar-type module with two built-in actuators showed excellent vibration output of up to 3.3 g at 170 Hz, confirming the possibility of providing haptic feedback in medium and large touch displays.