• Title/Summary/Keyword: Force Curve

Search Result 654, Processing Time 0.031 seconds

Development of Adhesion Force Measurement Apparatus with High Stiffness and High Resolution (고탄성 고분해능을 갖는 응착력 측정장치의 개발)

  • Kim, Gyu-Sung;Yoon, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.140-146
    • /
    • 2007
  • To understand adhesive phenomena, we need to get force curve between two surfaces. And it is said that high stiffness force analysis system is needed to get precise force curve and more information of the surfaces. Usually the stiffness of the force measurement system is under the order of 10N/m. The stiffer force measurement system, however, results in more information on the surface, because higher stiffness lead to the wider range of force curves, secondly because the force curve obtained through the stiffer one describes more precise relationship between relative tip-sample separation and interaction force. In this paper, considering for stiffness and resolution, the cantilever was designed and we made adhesion force measurement apparatus with high stiffness and high resolution, so we measured adhesive force between Ag-ball and wafer.

A Study on the Design of Rifling Angle by Setting up an Idealized Rifling Force Curve (이상적인 강선력 곡선에 의한 강선각 설계기법)

  • Cha, Kiup;Ahn, Sangtae;Cho, Changki;Choi, Euijung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Rifling Force can be described with projectile velocity, gas pressure and rifling angle, etc. Under the same conditions, the character of the rifling angle decisively influences the rifling force. To reduce the harmful effect, locally distinct maximum of rifling force has to be avoided. The optimal design methodology of rifling angle curve had been developed by combined Fourier series and polynomial function. When it was tried newly to design the rifling angle curve, this design trial caused not to produce the lower rifling force than the existing design. Normally, the curve of the rifling angle is designed first, then the rifling force is set according to the rifling angle curve. However during the cause analysis, new design methodology was established to design the ideal rifling force curve before the rifling angle design. With this new methodology, the above optimal design method was analyzed and its limitation was confirmed.

Modeling Method for the Force and Deformation Curve of Energy Absorbing Structures to Consider Initial Collapse Behaviour in Train Crash (열차 충돌에너지 흡수구조의 초기붕괴특성을 고려하기 위한 하중-변형 곡선 모델링 방법)

  • Kim, Joon-Wo;Koo, Jeong-Seo;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.116-126
    • /
    • 2010
  • The Korean rolling stock safety regulation stipulates that the collision deceleration of a car body should be maintained under average 5g and maximum 7.5g during train collisions. One-dimensional dynamic model of a full rake train, which is made up of nonlinear springs/bars-dampers-masses, is often used to estimate the collision decelerations of car bodies in a basic design stage. By the way, the previous studies have often used some average force-deformation curve for energy absorbing structures in rolling stock. Through this study, we intended to analyse how much the collision deceleration levels are influenced by the initial peak force modeling in the one-dimensional force-deformation curve. The numerical results of the one-dimensional dynamic model for the Korean High-Speed Train show that the initial peak force modeling gives significant effect on the collision deceleration levels. Therefore the peak force modeling of the force-deformation curve should be considered in one-dimensional dynamic model of a full rake train to evaluate the article 16 of the domestic rolling stock safety regulations.

A Study on the Optimal Design of Rifling Rate (강선율 최적설계에 관한 연구)

  • Cha, Ki-Up;Cha, Young-Hyun;Lee, Sung-Bae;Cho, Chang-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.998-1005
    • /
    • 2010
  • Rifling force has a torsion impulse effect on the gun tube and thus generates undesirable vibration of the gun tube about its bore axis, putting additional stress on the projectile. High rifling force at the muzzle of the gun tube may adversely influence the trajectory of the projectile. And, the service life of rifled gun barrels is known to depend on the rifling force. Rifling force along the path of the projectile in the longitudinal direction of the gun tube can be described with projectile mass, projectile velocity, gas pressure curve and rifling angle. Under the same conditions, the character of the rifling of the gun barrel decisively influences the rifling force curve. To reduce the above mentioned harmful effect, locally distinct maximum of rifling force has to be avoided and maximum rifling force needs to be minimized. The best way to minimize the maximum rifling force is to design a rifling angle function so that the rifling force curve has a near trapezoidal shape. In this paper a new approach to make the optimal rifling force curve is described. The rifling angle determining the rifling force is developed by combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems.

Force-Displacement Relationship Diagram for Shear Connections in Vertical Construction Joints of Slurry Walls (지하연속벽 수직시공이음부의 전단접합부에 대한 힘-변위 상관도)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.397-398
    • /
    • 2023
  • To design the shear connections for vertical construction joints of slurry walls, it is necessary to create a force-displacement curve that represents the structural performance of the shear connections. This paper proposes a method for preparing the force-displacement curve of the shear connections including major considerations.

  • PDF

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Punch Properties of Some Vegetables (몇가지 채소류의 펀치특성)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.273-278
    • /
    • 1997
  • In order to investigate the punch properties of some vegetables-cucumber, radish, garlic, ginger and potato-force, distance, and time were measured with a texturometer, and the correlations between compositions and cell characteristics of samples were characterized. Many reflection and rupture points on the force-distance and distance-time curve were observed, and these points appeared when the cells of sample were resisted and yielded against the applied force. They were big and clear at the slow crosshead speed. The regression analysis for force-time and distance-time to the rupture point showed $R^{2}>0.95$. The rupture time and rupure force were 5.63 sec, 4.88 N in ginger and 4.15 sec, 2.00 N in cucumber. The rupture forces become large values at the fast crosshead speed. As cell sizes were increased, the moisture content and rupture distance were increased, while the viscosity of juice, density, regularity of cell, and slope of force-time were decreased. Rupture force, time and distance were decreased at the large specific gravity of samples. The slopes of distance-time curve were inversely proportional to slope of force-time curve.

  • PDF

A PHOTOELASTIC STUDY OF THE EFFECT OF LOOPS IN ARCH WIRE AND ORTHODONTIC ELASTICS IN RELIEF OF CURVE OF SPEE (호선에 부여한 loop와 교정용 고무가 치궁만곡도 개선에 미치는 영향에 관한 광탄성학적 연구)

  • Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.485-492
    • /
    • 1993
  • Multiloop Edgewise Archwire(MEAW) is effective in relief the Curve of Spee in mandibular arch but up Sl down orthodontic elastics must be used with it. The purpose of this study was to analyse the effect of orthodontic elastics, like as up & down elastics, Class II elastics, and Class III elastics, and the effect of L loop in Multioop Edgewise Archwire. 1. Intrusive force of MEAW in anterior teeth was reduced and uprighting force in premolars was increased by up & down elastics. 2. Uprighting force was significintly increased with Class III elastics in multiple L loop arch wire. 3. The force of Class II elastics made molars tip mesially and Curve of Spee deep.

  • PDF

Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path (비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상)

  • Jeong, Hyun Gi;Jang, Eun Hyuk;Song, Youn Jun;Chung, Wan Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.