• Title/Summary/Keyword: For-bar linkage

Search Result 87, Processing Time 0.024 seconds

Transport Velocity of Perilla Grain on Oscillating Sieve in Elliptical Motion

  • Pang, Yeoun Gyu;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.194-201
    • /
    • 2018
  • Purpose: The objective of this study was to propose a formula for the theoretical grain mean transport velocities of an elliptically moving oscillator by modifying the grain mean transport velocity formula applied to linear motion and to compare the calculated values with the experimental values of grain mean transport velocity. Methods: The values of the throwing index ($K_v$) and the maximum horizontal velocities for various positions on the elliptical oscillator were obtained using kinematic analysis. To obtain the actual grain transport velocity, the mean transport velocities of perilla grains at six positions on the sieve surface were measured using a high-speed camera and compared with the theoretical values. The cam with an eccentric bearing on the oscillator was designed to be eccentric by 1.6 cm so that the lengths of the major axis of the elliptical motion were 3.2-3.6 cm. The material used in the experiments was perilla grain. Results: The experimental result was consistent with the theoretical value calculated using the proposed formula ($R^2$ is 0.80). It is considered that the angle difference between the maximum accelerations in the directions vertical and horizontal to the sieve has as much influence on the grain mean transport velocity as the value of Kv itself. Conclusions: It was possible to theoretically obtain the grain mean transport velocities through a screening device in elliptical motion by modifying the formula of the grain mean transport velocities used in linear motion.

Dynamic Characteristics of the Reciprocating Cutter-bar of Combine Harvester(I) (콤바인 예취장치(刈取裝置)의 절단현상(切斷現象) 및 동적특성(動的特性)에 관한 연구(硏究)(I) -왕복동(往復動) 예취장치(刈取裝置)의 동적특성(動的特性)-)

  • Chung, C.J.;Lee, S.B.;Noh, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.163-174
    • /
    • 1994
  • This study was conducted to investigate the dynamic motion of knife drive system of combine harvester. A computer program was developed to simulate the dynamic motion of the knife drive linkage and its algorithm was evaluated through experiments. The results are summarized as follows : 1. The theorectical horizontal (the direction of knife's reciprocating motion) reaction forces at the supporting point of rocker arm and crank arm were changed in the similar sinusoidal trends with the measured reaction forces. 2. The maximum values of shaking moment and reaction force per one revolution of crank arm followed polynomial trends as the rotational speed of crank shaft increased. The unbalanced force acting on the driving system increased at high speed. Therefore, the rotational speed of crank shaft should be maintained in proper range at increased forward speed to decrease vibration of the knife drive system. 3. The added mass to the crank arm increased the dynamic unbalanced force at the supporting point of rocker arm. It counterbalanced the reaction force at the supporting point of crank arm.

  • PDF

Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp (형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발)

  • Sin, Minki;Cho, Jang Ho;Woo, Hyun Soo;Kim, Kiyoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

Evaluation of a Crank-type Walking Cultivator for Upland Farming

  • Kwon, Tae Hyeong;Ashtiani-Araghi, Alireza;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Purpose: This research was conducted to evaluate feasibility of a crank-type walking cultivators for weeding in furrowed upland. Methods: A walking cultivator developed by RDA was selected and evaluated with its working speed (S), cultivation depth (CD) and weeding performance (WP). The evaluation was performed in upland field on July and August, 2012. Also kinematic analysis of the machine was performed to draw out design improvements. Results: S in flat, uphill and downhill were about 0.11 m $s^{-1}$, 0.11 m $s^{-1}$, and 0.13 m $s^{-1}$ respectively. It was found that S had a low relevance with user conditions. The CD was 35 ~ 40 mm which was satisfied with the RDA guide for weeding machine. A wide variation was observed in values of WP depending on the growth stages of weeds and field conditions. The cultivator showed low performance in eliminating the well-grown weeds. Kinematic simulation revealed that high forward speed caused a high ratio of un-weeded area. Conclusions: The weeding performance of the cultivator was satisfactory for weeds in early growth stage but it showed difficulties in handling on up-slope and in entering up-land. Specifically, the weight of the cultivator was judged as overweight for female workers. The crank-hoe type cultivator was judged as unsuitable for small walking type machine due to weight of the four-bar linkage system. Kinematic analysis revealed that the ratio of crank speed to the ground speed must be 850 rpm s $m^{-1}$ (255 rpm based on 0.3 m $s^{-1}$) or greater to avoid uncultivated area. Selection of forward speed is a decisive factor in designing the weeding cultivator.

Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems (수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어)

  • Lee Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.211-217
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation (오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증)

  • Lee Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

A 3-D RBSM for simulating the failure process of RC structures

  • Zhong, Xingu;Zhao, Chao;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • Rigid body spring method (RBSM) is an effective tool to simulate the cracking process of structures, and has been successfully applied to investigate the behavior of reinforced concrete (RC) members. However, the theoretical researches and engineering applications of this method mainly focus on two-dimensional problems as yet, which greatly limits its applications in actual engineering projects. In this study, a three-dimensional (3-D) RBSM for RC structures is proposed. In the proposed model, concrete, reinforcing steels, and their interfaces are represented as discrete entities. Concrete is partitioned into a collection of rigid blocks and a uniform distribution of normal and tangential springs is defined along their boundaries to reflect its material properties. Reinforcement is modeled as a series of bar elements which can be freely positioned in the structural domain and irrespective of the mesh geometry of concrete. The bond-slip characteristics between reinforcing steel and concrete are also considered by introducing special linkage elements. The applicability and effectiveness of the proposed method is firstly confirmed by an elastic T-shape beam, and then it is applied to analyze the failure processes of a Z-type component under direct shear loading and a RC beam under two-point loading.