• Title/Summary/Keyword: Footstep

Search Result 29, Processing Time 0.022 seconds

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

Approach toward footstep planning considering the walking period: Optimization-based fast footstep planning for humanoid robots

  • Lee, Woong-Ki;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.471-482
    • /
    • 2018
  • This paper proposes the necessity of a walking period in footstep planning and details situations in which it should be considered. An optimization-based fast footstep planner that takes the walking period into consideration is also presented. This footstep planner comprises three stages. A binary search is first used to determine the walking period. The front stride, side stride, and walking direction are then determined using the modified rapidly-exploring random tree algorithm. Finally, particle swarm optimization (PSO) is performed to ensure feasibility without departing significantly from the results determined in the two stages. The parameters determined in the previous two stages are optimized together through the PSO. Fast footstep planning is essential for coping with dynamic obstacle environments; however, optimization techniques may require a large computation time. The two stages play an important role in limiting the search space in the PSO. This framework enables fast footstep planning without compromising on the benefits of a continuous optimization approach.

Footstep Detection and Classification Algorithms based Seismic Sensor (진동센서 기반 걸음걸이 검출 및 분류 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bea, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.162-172
    • /
    • 2015
  • In this paper, we propose an adaptive detection algorithm of footstep and a classification algorithm for activities of the detected footstep. The proposed algorithm can detect and classify whole movement as well as individual and irregular activities, since it does not use continuous footstep signals which are used by most previous research. For classifying movement, we use feature vectors obtained from frequency spectrum from FFT, CWT, AR model and image of AR spectrogram. With SVM classifier, we obtain classification accuracy of single footstep activities over 90% when feature vectors using AR spectrogram image are used.

Footstep Detection in Noisy Environment via Non-Linear Spectral Subtraction and Cross-Correlation (잡음 환경에서 비선형 주파수 차감 및 교차 상관을 이용한 사람 발자국 탐지 방안)

  • Kim, Tae-Bok;Ko, Hanseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.60-69
    • /
    • 2014
  • Footstep detection using seismic sensors for security is a very meaningful task, but readings can easily fluctuate due to noise in outdoor environment. We propose NSSC method based on nonlinear spectral subtraction and cross-correlation using prime footstep model signal as a footstep signal refining process that enhances the signal-to-noise ratio (SNR) and attenuates noise. After de-noising, a detection event classification method is presented as further refining process to ensure that the detection result is a footstep. To validate the proposed algorithm, representative experiments including sunny and rainy-day cases are demonstrated.

Footstep Planning of Biped Robot Using Particle Swarm Optimization (PSO를 이용한 이족보행로봇의 보행 계획)

  • Kim, Sung-Suk;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.566-571
    • /
    • 2008
  • In this paper, we propose a footstep planning method of biped robot based on the Particle Swarm Optimization(PSO). We define configuration and locomotion primitives for biped robots in the 2 dimensional workspace. A footstep planning method is designed using learning process of PSO that is initialized with a population of random objects and searches for optima by updating generations. The footstep planner searches for a feasible sequence of locomotion primitives between a starting point and a goal, and generates a path that avoids the obstacles. We design a path optimization algorithm that optimizes the footstep number and planning cost based on the path generated in the PSO learning process. The proposed planning method is verified by simulation examples in cluttered environments.

Fuzzy Footstep Planning for Humanoid Robots Using Locomotion Primitives (보행 프리미티브 기반 휴머노이드 로봇의 퍼지 보행 계획)

  • Kim, Yong-Tae;Noh, Su-Hee;Han, Nam-I
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.7-10
    • /
    • 2007
  • This paper presents a fuzzy footstep planner for humanoid robots in complex environments. First, we define locomotion primitives for humanoid robots. A global planner finds a global path from a navigation map that is generated based on a combination of 2.5 dimensional maps of the 3D workspace. A local planner searches for an optimal sequence of locomotion primitives along the global path by using fuzzy footstep planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

  • PDF

Humanoid Robot Footstep Planner with Fuzzy-Based Multi-Criteria Decision Making (퍼지 기반 다기준 의사 결정을 이용한 휴머노이드 로봇 걸음새 계획기)

  • Lee, Ki-Baek
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.441-447
    • /
    • 2015
  • This paper proposes a novel fuzzy-based multi-criteria decision making method and implements a footstep planner for humanoid robots with it. Humanoid robots require additional footstep planning process in addition to path planning for the autonomous navigation. Moreover, it is necessary to consider safety and energy consumption as well as path efficiency and multi-criteria decision making is indispensable. The proposed method can provide not only well- distributed and non-dominated, but also more preferable solutions for users. The planned footsteps by the proposed method were verified through simulation. The results indicate that the user's preference is properly reflected in optimized solutions maintaining solution quality.

An Efficient Intruder Detection using the Seismic Sensor (진동센서를 이용한 효율적인 침입자 탐지 기법)

  • Kim, Yong-Hyun;Chung, Kwang-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1129-1137
    • /
    • 2011
  • This paper reports on a design of the footstep signal detection system using the seismic sensor. First, we analyzed the characteristics of seismic signal, seismic sensor, and the UGS(Unattended Ground Sensor) system with seismic sensors. In addition, we summarized the existing algorithms to detect footstep using the seismic sensors, and developed our low-power and high efficient footstep detection algorithm. In this paper, the sensor node operations are classified into three different steps and different resources and algorithms are applied to each step, not only to minimize the power consumption, but also to improve the performance.

Footstep Planning of Biped Robot Using Particle Swarm Optimization (PSO를 이용한 이족보행로봇의 보행 계획)

  • Kim, Seung-Seok;Kim, Yong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.86-90
    • /
    • 2007
  • 본 논문에서는 Particle Swarm Optimization(PSO) 기법을 이용한 이족보행로봇의 보행 계획방법을 제안한다. 이족보행로봇의 보행 프리미티브를 기반으로 PSO의 학습 및 군집 특성을 이용하여 장애물이 있는 작업공간에서 보행 계획을 수행하였다. 먼저 PSO의 탐색알고리즘을 사용하여 장애물을 회피하는 실행 가능한 보행 프리미티브들의 순서를 찾아내고 탐색된 순서를 바탕으로 경로 최적화 알고리즘을 수행하는 보행 계획방법을 제안하였다. 제안된 PSO 기반 이족보행로봇의 보행 계획방법은 모의실험을 통하여 발걸음 탐색 시간이 줄고 최적화된 보행 경로를 생성하는 것을 검증하였다.

  • PDF