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Abstract

In this paper, we propose an adaptive detection algorithm of footstep and a classification algorithm for activities of the
detected footstep. The proposed algorithm can detect and classify whole movement as well as individual and irregular
activities, since it does not use continuous footstep signals which are used by most previous research. For classifying
movement, we use feature vectors obtained from frequency spectrum from FFT, CWT, AR model and image of AR
spectrogram. With SVM classifier, we obtain classification accuracy of single footstep activities over 90% when feature
vectors using AR spectrogram image are used.
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1. Introduction reconnaissance. It plays a vital role in border and

camp protection[1~2]. All these applications involve

Personnel detection and classification are an deployment of sensors for a prolonged time; these
important aspect of intelligence, surveillance, and sensors are often camouflaged so as not to be

noticeable by an intruder’s visual inspection[g].

B Currently, research about multimodal unattended
A, el A AT Ay
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only wake up to take a picture once the non-imaging
sensors determine that there is a viable human target
present in the vicinity.

Personnel detection and classification using seismic
sensors has been considered by several authors in
the literature. Seismic sensors are small enough that
they can be easily hidden away so as to not be
noticeable from an intruder’s visual inspection.
Moreover, the creation of artificial vibrations intended
to cause confusion in the recognition process is very
difficult. Primarily, the seismic sensors are used to
estimate the cadence of a person Walkingmwg]. Bland
has discussed the use of autoregressive coefficients
in designing a footstep detection scheme from
acoustic and seismic sensors”. Succi et al. proposed
the use of signal kurtosis as a test statistic for
U0 Park et al.

have considered the problem of detecting and
1]

detection of human footstep signals

classifying perimeter intrusion using geophones
Iyengar et al. fused acoustic and seismic signals for

U2 Their work discusses a novel

footstep detection
approach based on canonical correlation analysis and
copula theory to establish a likelihood ratio test.
Houston and McGaffigan have proposed using
cadence features for detection of footstepsm.

All of the mentioned research have used the
fundamental gait frequency, interval of cadence and
amplitude of signal. Thus, they can not detect
movement when footstep intervals are the same.

To overcome this problem, we propose an adaptive
detection algorithm and a classification algorithm
based on

research, the proposed algorithm can classify each

single footstep. Unlike the previous

footstep movement regardless of gait frequency and
cadence interval.

This paper is organized as follows: In Section II,
we describe the seismic signal dataset collected by
the authors’ group and extract the footsteps from the
signal. Section III describes the feature extraction
based on frequency spectrum and AR spectrogram
We demonstrate  experimental

for classification.

(163)

163
Vol. 52, NO. 1, January 2015

results in Section IV by wusing support vector
machine(SVM). Section V concludes the paper with a

brief summary and discussion.
II. Adaptive footstep Detection

When humans walk or run, the footsteps generate
impulsive seismic signals that propagate through the
earth surface. The average speed of the seismic
signal was measured as 252.6 m/s, by using Rayleigh
wave propagation[4]. Geophones are used to capture
signals generated by these waves. We recorded the
seismic data generated by the footsteps of the
walking and running human using GS 11D seismic
sensor(OYO Geospace company). The layout of the
sensors deployed and the path trajectory of the
human is shown in Fig. 1. The target is moving in
the direction of the random and the distance between
the target and the sensor is 2 ~ 82m. Data is
obtained from three persons of which heights and
in Tablel. Then,

person walks and runs according to the given

weights are summarized each
movement scenario.

The received seismic signal has different amplitude
and period due to the type of target, how the target
is moving(walking, running) and depending on the
distance between the target and the sensor. We may
can classify the target and activities using cadence,

peak amplitude and span of the signal if distance

= 1
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Table 1. Personal physical information.
HI1 H2 H3
hight(cm) 168 171 172
weight(kg) 78 79 70
O.Sm‘} 8m N
'.J 4._._.;'.* L .7‘.4._.;'.7‘.7"73.,
2m ////////
- 8.2m
dgeismic sensor
% 1. Hlolg & ALz
Fig. 1. Data collection scenario.
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between the target and sensor is constant. It is
difficult to classify the object using only the seismic
amplitude, when distance information between the
target and the sensor is absent.

The

characteristics by the continuity of the gait, i.e. the

received seismic  signal has periodic
period when human is running is shorter than when
human is walking. However, classification result
depend on the behavior of the target’s gait, targets
walking quickly and slowly running cannot be
classified. In addition, activity which is mixed human
walk and run cannot be classified because the period
1s not constant. In this paper, we extract the single
footstep from the seismic signal and classify the
target activities using the footstep characteristics.

Predicting performance under operational conditions
add additional complexity due to wide variation in
target and noise statistics. Especially, performance of
the seismic sensor depends on the characteristic of
background noise. If statistics of background noise
are not time-varying, the threshold V, maintains
the specified probability of false alarm. However,
statistics of background noise depend on the
component of soil. Even the same location, hence the
same soil component, the noise statistics vary with
temperature and humidity of the soil and even the
air”. In order to maintain a constant probability of
false alarm in the presence of non-stationary noise,
an adaptive threshold method is required.

Signal detection is a classical problem of binary
hypothesis testing. Under the null hypothesis #,, the
received signal y(¢) is composed of noise alone. The
background noise is the random Gaussian distribution
in seismic sensor, and the envelope of the random
Gaussian noise is Rayleigh distribution.

H,:y(t) =n(t) where n(t) ~ MO0, of)

pX|H0($|H0): %emp (1)

0o

2

where o is the conditional variance and py,, (zlH,)
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1s the conditional probability density function of
given that the envelope of received signal, and the
signal is only noise. Eq. (1) depends on the signal
parameter o;.

Under hypothesis #,, the received signal y(¢) is
the sum of the transmitted signal and noise. In the
footstep signal, there are the noise n(t) and the
signal s(t). The noise and signal are the random
Gaussian distribution in the seismic sensor. If both
n(t) s(t)

independent Gaussian distributed with the same zero

random signals and are statistically

mean and the different variance (o, o7), then the
variance of their sum equals the sum of their
variance, ie., if n(t) ~ N0,05) and s(t) ~ N0, 07)

then

H :y(t)=s(t)+n(t)
= B

where y(t) =n(t)+s(t) ~ M0,05+07) ~ N0,0%), o

pX\H‘(xU{l): % exp(—

is the conditional variance and py,(2lH,) is the
conditional probability density function of X given
that the received signal is a random signal plus
Fig. 2 indicates the
probability density functions under #, and #;.

noise. histogram and the
The detection threshold level is calculated using
Neyman-Pearson detection criterion and distribution

parameter of noise. The threshold is obtained once

14000 T T
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a4 8724
Fig. 2. Histogram and Rayeligh pdf fitting of noise and

signal.
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the probability of false alarm is set. Fig. 2 shows the
distributions of noise and signal using collected data.
As seen in Fig. 2, the probability of false alarm is
the area under the pdf of background noise above the
threshold level V.

Ppy= / B VPX\H,(x‘H(Q dx
3)
< x z? d [ V% ]
= —exp|—— |dr=exp| ——=
z="Vr Ug P 203 ’ 20(2)
solving for V, yields
Vi=00y/=21nPpyy (4)

where o, is the scale parameter of the noise
distribution. For example, under 10% of P, the
threshold voltage is V;,=2.146 0.

As shown in Fig. 2, the probability of detection is
the area under the signal-plus—noise curve above the
detection threshold.

PD:/ P (@l ) d
z=Vr

T e )d_(_V)
x:VTO'Q 20° 20°

2 is the variance of the noise

)

2

where o =ag+0§, o

and o2

is the variance of the signal.

The receiver operating characteristic(ROC) curve is
also known as a relative operating characteristic
curve, because it 1S a comparison of two operating
characteristics (P, and Py,) as the criterion changes
13 As shown in Fig. 2, the probability of detection is
the area under the signal-plus—noise curve above the
detection threshold, and the probability of false alarm
is the area under the noise-only curve above the
threshold level V7. Using Eq. (3) and Eq. (5), P, and

Py, are present as Eq. (6).

> (6)
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Fig. 3. (a) Probability of detection versus SNR,
(b) Receiver operating characteristic curve.
2 oitol . .
where o’ = —=——-—=1+SNR and v is the ratio
99 99

of prior probabilities.

Fig. 3. shows the probability of detection versus
SNR and ROC curve. Fig. 3(a) provides a quick view
mmpact of varying system requirements on the
required SNR. Lowering the false alarm rate results
in higher required SNRs for the same probability of
detection. Also, if the required probability of detection
1s reduced while maintaining the same false alarm
rate, lower SNRs are required.

For preprocessing, Band pass filter with a center
frequency within the frequency band of 10750 Hz is
used for eliminate the power noise(60Hz) and
unknown noise(8Hz). For processing the footstep
extraction sliding window and background noise
adapted threshold are wused. Fig. 4

flowchart for the algorithm used in extracting the

shows the

footsteps form seismic signal. By comparing

windowed seismic signal with adaptive threshold, we
save data when the location of maximum of absolute

value of data is same as the median of data.
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Fig. 4. Flowchart for footstep extraction from seismic
signal.
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Fig. 5. Footstep extraction from seismic signal.

Window slides one sample and next segment of
data is obtained and processed. To guarantee the
performance under the variation of background noise,
the algorithm updates the of
background noise every 1000 samples and recalculate
the threshold. If the absolute value of background
noise is smaller than the initial threshold, then it is
accumulated the
parameter. The buffer size of 1000 calculates the
distribution of noise with
frequency of 2000Hz. The threshold is updated using
calculated scale parameter and the Eq. (4).

Fig. 5 shows the intermediate result of footstep

scale parameter

in buffer, and updates scale

in  0.bsec

sampling

extraction. The blue solid line is the waveform of

band pass filtered seismic signal. The red solid line

| 4&
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indicates the noise adapted threshold using Eq. (4)
under false alarm of 10%. The black circles are the
centers of window for extracting footstep. After
footstep extraction, all footsteps are normalized by

power for feature extraction.

Ill. Feature extraction

1. Spectrum based features

The most common method for frequency analysis
is the Fast Fourier transform(FFT). For the first
feature vector, we use absolute value of FFT
corresponding to 10Hz to 100Hz.

For second feature vector, we use the continuous
wavelet transform(CWT) which use wavelet function
for frequency representation. The CWT compares the
to stretched

versions of a wavelet and is defined as follows:

signal shifted and compressed or

Cla,c;6(t—7),¢(¢))
= fj;é(t*ﬂ \/15 1/}*( t;b)dt:

where v¢(t) is a wavelet function, t is time, and «

«[ 7D

7wl

) (7)

a

is scale. The scale values determine the degree to
which the wavelet is compressed or stretched. The
low scale values compress the wavelet and correlate
better with high frequencies. The CWT coefficients
at lower scales represent energy in the input signal
at higher frequencies, while CWT coefficients at
higher scales represent energy in the input signal at
lower frequencies. For the feature vector, we use

square of CWT coefficients of scale from 10 to

100.better with high frequencies. The CWT
coefficients at lower scales represent energy in the
input signal at higher frequencies, while CWT

coefficients at higher scales represent energy in the
mput signal at lower frequencies. For the feature
vector, we use square of CWT coefficients of scale
from 10 to 100.

For third feature,

analysis

we use autoregressive(AR)

spectrum especially using the Burg
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Fig. 6. Analysis of each footstep pulse. (a) Waveform

of walking, (b) Waveform of running, (c)
Frequency spectrum of walking, (d) Freguency
spectrum of running.

algorithm. The estimate of the power spectral
density(PSD) of the signal is used as feature. We use
16th order of AR prediction model for the estimate of
PSD. In Fig. 6, we show waveforms and frequency
obtained from FFT, CWT and AR
prediction model. The solid blue lines in Fig 6(c) and
Fig 6(d) indicate the FFT results of walking and

running respectively. We can observe that the impact

spectrums

of running on the ground causes wider frequency
band than that of walking. The dashed cyan line in
Fig. 6(c) and Fig. 6(d)
foom CWT

function(’gausd’) is used as wavelet and the resulting

indicate the frequency

spectrum results when gaussian

is converted to
frequency. The dotted lines in Fig. 6(c) and Fig 6(d)
indicates the AR spectrum of walking and running

output power value for scale

respectively. We can notice that the signal from
walking has one peak of mid 20Hz, where signal from
running has two peak of mid 20Hz and mid 30Hz.

2. AR spectrogram based feature

The footstep signatures of humans or animals

(167)
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obtained using seismic sensors are non-stationary in
nature. By using this fact, we employ time-frequency
analysis. Time-frequency analysis is to find what
frequency occurs at what time in a signal. This is
performed by mapping a one dimensional signal in
the

time—frequency

two  dimensional
of the

Spectrogram is visualizations of the evolution of the

time domain, into a

representation signal.

PSD of signal swept through time. For PSD
estimation, we use AR spectrum.
Let AR spectrogram image I(z,y) be a

two-dimensional N, x N, array of intensity values.
An image may also be considered as a vector of
dimensional N, /N, so that image in this paper of size
100 by 473 becomes a vector 47300-dimensional
space. An ensemble of images, then, maps to a
collection points in this huge space. Nevertheless
image can be described by a relatively low
dimensional subspace. For extract the feature vector
in AR spectrogram analysis, we use the eigen-image
technique which is widely used in face recognition
The

technique functions by projecting spectrogram images

and 1image processing area. elgen-image
onto a feature space that spans the significant
variations among known spectrogram images. The
significant features are the eigenvectors of the set of
images. The projection operation characterizes an
individual spectrogram image by a weighted sum of
the eigen-image features, and so to classification a
particular spectrogram image it is necessary only to
to  those

individuals™. The goal of AR spectrogram analysis

compare these weights of known
iIs to extract weights as a feature vector for
classification. AR spectrogram are used as the image
for the eigen—-image. In what follows, describe how to
calculate the weight in details.

Let the training set of AR spectrogram images be

L.I,..T

I, each vector is of length NN, x1,

describes an N, x &, image. Each spectrogram differs

from the average by the vector o =I-Y, where

the average spectrogram of the set is defined by
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n=1

1 5 T T
— § : = 8
C Mn_1¢”¢n AA &)
where the matrix A= [@1 @2 Q)J [] . The matrix

C, however, is NN,x NN, and determining the
NN, eigenvectors and eigenvalues is an intractable
task for typical spectrogram size. If the number of
data points in the image space is less than the
dimension of space(M< NN, ), there will be only
M—1, rather than NN, meaningful eigenvectors.
Consider the eigenvector v, of AA”T such that
AATQi:MiQi- Pre-multiplying both side by A, we
have Eq. (9).

AATA v= 1A v, ©)

From which we see that Av, are the eigenvectors for
C=AAT. Following analysis,
Mx M matrix L=ATA, where L,,=®"® , and

m—n

we construct the

find the M eigenvectors, v, of L. In practice, a

smaller M’ (M’ < M) is sufficient for identification,
since accurate reconstruction of the AR spectrogram
image is not a requirement. The eigenimages span an
M’ —dimensional subspace of the original NN, image
space. In many of our test cases, based on M=20
AR spectrogram images, M =19 eigenimages were
AR

transformed into its eigenimage components by a

used. A new spectrogram image(I) is

simple operation,

wp= (Av) (L @) (10)

for k=1,2,.,M , The weights from a vector
hat describes the contribution of
mput AR

spectrogram image, treating the eigen-images as a

2= ["—’1 Wy *** ‘UM’]T

each eigen-image In representing the

basis set for AR spectrogram images. The weight

vector may then be used as a feature vector.
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Fig. 7. Analysis of each footstep (a) Waveform of
walking, (b) Waveform of running, (c) AR
spectrogram for walking, (d) AR spectrogram for
running, (e) Weight vector of walking. (f) Weight
vector of running.
The proposed algorithm  uses  eigenvalue

decomposition and matrix-vector operation. Major

computation is eigenvalue decomposition of which
o).

M=20 in our case, O(20°) and matrix-vector

computational complexity is Since the
operation are added for feature extraction.

Fig. 7 shows feature extraction based on AR
spectrogram. Fig. 7(c) and Fig. 7(d) indicate the AR
spectrogram of walking and running respectively. For
AR processing sliding window is used, which size is
32 millisecond and sliding 0.5 millisecond, and next
segment of data is obtained and processed. The order
of an AR prediction model is 16th order. The weight

vectors(2) are indicated in Fig. 7(e) and Fig. 7(f).
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Waveform of pulse(SNR: 15dB)

AR spectrogram(SNR: 15dB)

Nomarized power (dB)

ro

15dB SNR Zf20| U= He= eXi=ol tist =2
M (@) TH, (b) Fo AHER- (o) AR 2H
EzOH

Fig. 8. Analysis of running footstep with noise, 15dB
SNR  (a) Waveform, (b) Frequency spectrum,
(c) AR spectrogram.

3. Feature comparison in noise environment

In order to compare the change in accuracy for
noise, we analyze feature using footstep added white
Gaussian noise with various SNR. Fig.7 indicate the
spectrum and AR spectrogram of Fig 6(b) added 15dB
white Gaussian noise. Fig 6(d) and Fig 8(b) indicate
the spectrum of running footstep and that with noise
respectively. In comparison with two spectrums, noise
has influence on FFT, CWT and AR spectrum, e.g.,
AR spectrum of clean footstep has 2 peak mid-20
and mid-30 Hz, but AR spectrum of footstep added
noise has only one peak in mid-20 Hz. In Fig 7(d) is
AR spectrogram of running and AR spectrogram of
added 15dB white Gaussian noise is in Fig 8(c). Noise
has no direct effect on AR spectrogram until 15dB.

IV. Classification results

1. Single footstep result

In this section, we present experimental results. In
Table 2, we describe the feature vectors for
classification. The classification algorithms used in
this paper is linear SVM. 10% of data set is used for

2 53 4

Table 2. Feature vectors.

Feature Size
Absolute value of FFT
FFT frequency 10~100Hz. 901

Square of CWT coefficients of

Analysis

Spectrum | CWT 10100 scale. 901
16™ order AR spectrum

AR frequency 10~100Hz. 901

Spectrogram | AR Weight vector from 19%1

spectrogram image.

¥ 3 HotEl EAHEHE 0|88 2FZTHY%) HlW
Table 3.  Comparison of the classification accuracy(%) by
using proposed feature vector.

Feature walking running
FFT 80.95 80.26
CWT &.71 88.16

AR spectrum 8.71 89.47
AR spectrogram 93.65 97.74
100
o0 =
9% | __.-~
80 | ~//‘/ p
& ol T Lo 209%
g e
% 60
2
sor FFT b
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40 F cee s AR spectrum b
—-— - AR spectrogram
20 II; 1‘E| 15 2'E| 2:5 30
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2 9. SNRoll st FFT, CWT, AR A=IEZ AR A4
E2O™e FEE(%) vl

Fig. 9. Comparison of accuracy(%) curve for the FFT,
CWT, AR spectrum and AR spectrogram with
various SNR.

training, and the rest of data set is used for the

performance evaluation test. We evaluate the

classification performance of features using FFT,

CWT, AR spectrum and AR spectrogram of the

seismic footstep dataset.

The results of based on spectrum and spectrogram
analysis are shown in table 3. In frequency spectrum,
the accuracy by using CWT and AR spectrum are
roughly 5 to 9% better than FFT. AR spectrum
shows the best accuracy result among frequency
analysis as 85.71% of walking and 89.47% of running
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activities. 2. Continuos footsteps result

Classification accuracy according to various SNR is In practice, human behaviors consist of a sequence
shown in Fig. 9. These curve indicate that of transit activities. If we can reliably classify
classification accuracy using AR spectrogram is individual footstep as running and walking, then it
robust against background noise. Performance of AR would be useful to many applications. In this section,
spectrogram at SNR of 15dB is above 80%, and we show the classification of each single step in
shows reduction of 9% compared with that at SNR continuos movement. To demonstrate the performance

of 30dB. On the other hand, performance obtained of the proposed AR spectrogram algorithm, we
from FFT, CWT, and AR spectrum decreases consider two sequential movement undertaken by
approximately 20%. This indicates that the algorithm person H2 whose height is 17lcm and weight is
based on AR spectrogram is the best in noisy T9%kg.

environment. The first movement is obtained when human walk
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three steps and run three steps repeatedly by passing
horizontal direction to seismic sensor. The movement
path,

classification result are shown in Fig 10(a). Also the

activities, AR spectrogram, waveform and
classification result of SVM is shown as red line.
The positive red line represents walking and negative
red line represents running. As shown in Fig 10(a),
the proposed algorithm detect the each foot step and
classify the activity of each step.

The second movement is composed of three
movement. The human walks horizontally across the
seismic sensor, runs toward seismic sensor and then
finally walks across sensor at closer distance.

Note that footstep interval of running is similar to
that of walking. The frequency of walking step
interval is 1.8 to 2.0 Hz and running step is 2.4 to 3Hz
BUL previous researches. With these algorithms
using footstep interval, all step are classified as
walking since the estimated step interval frequency is
2.07Hz. However, we can notice that the proposed
algorithm can detect the footstep and classify the
each activity as shown in the last graph of Fig.
10(b). The first movement and the last movement are
classified as walking, and the second movement
between two walking movements are classified as
running, even the footstep intervals are the same.

The results of two experiments shows the validity
and feasibility of the proposed algorithm. Thus the
proposed algorithm can be used for human activity
complicated and

detection and classification in

continuos movement.

V. Discussion and conclusion

In this paper, we proposed algorithms for single
footstep detection and classification of signal obtained
seismic sensor. For footstep detection, we propose an
adaptive algorithm using background noise level. The
frequency spectrums of FFT, CWT, AR modeling
and AR spectrogram are used as feature vector and

linear SVM is used for training and classification.
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The AR
spectrogram was found to be 93.65% of walking and

classification accuracy based on
94.74% of running activities. The AR spectrogram
based algorithm does not show much classification

performance degradation until SNR reaches 15dB.

However, algorithms using frequency information
show much performance degradation.
Also we showed outstanding  movement

classification results with two continuous and mixed
walking and running data. Even when the footstep
interval of running is similar with that of walking,
the proposed algorithm shows perfect classification of
single footstep. Thus, the proposed algorithm could
be a good candidate for determining the single foot

step and continuous foot step movement as well.
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