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요  약

본 논문에서는 적응형 걸음걸이 검출 알고리즘과 검출된 신호로부터 단일 발자국의 움직임을 분류하는 알고리즘을 제안한

다. 제안된 단일 발자국 기반 알고리즘은 기존의 연속된 발자국 신호를 이용한 분류 방식이 아니기 때문에 전체적인 움직임뿐

만 아니라 개별적이고 불규칙한 움직임도 검출 및 분류 가능하다. 분류를 위해 사용된 특징벡터는 발자국 신호의 푸리에 스펙

트럼, CWT의 스펙트럼, AR 모델링 스펙트럼과 AR 스펙트로그램 영상으로부터 얻어진 벡터이다. SVM을 이용하여 단일 발자

국의 움직임을 분류한 결과 AR 스펙트로그램으로 얻어진 특징벡터를 사용할 경우 90% 이상 분류 성능을 얻었다. 

Abstract

In this paper, we propose an adaptive detection algorithm of footstep and a classification algorithm for activities of the 

detected footstep. The proposed algorithm can detect and classify whole movement as well as individual and irregular 

activities, since it does not use continuous footstep signals which are used by most previous research. For classifying 

movement, we use feature vectors obtained from frequency spectrum from FFT, CWT, AR model and image of AR 

spectrogram. With SVM classifier, we obtain classification accuracy of single footstep activities over 90% when feature 

vectors using AR spectrogram image are used. 

      Keywords : Single footstep, seismic sensor, adaptive footstep detection, footstep classification

Ⅰ. Introduction

Personnel detection and classification are an 

important aspect of intelligence, surveillance, and 
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reconnaissance. It plays a vital role in border and 

camp protection[1～2]. All these applications involve 

deployment of sensors for a prolonged time; these 

sensors are often camouflaged so as not to be    

noticeable by an intruder's visual inspection[3]. 

Currently, research about multimodal unattended 

ground sensors (UGS) is being carried to detect and 

classification target in our country's border[4～5]. 

These UGSs, once deployed, should operate for a 

prolonged period of time because of their low power 

consumption. Some of the sensors that require low 

power are E-field, acoustic, seismic and magnetic. In 

most UGSs, the imaging sensors are dormant and 
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only wake up to take a picture once the non-imaging 

sensors determine that there is a viable human target 

present in the vicinity.

Personnel detection and classification using seismic 

sensors has been considered by several authors in 

the literature. Seismic sensors are small enough that 

they can be easily hidden away so as to not be 

noticeable from an intruder's visual inspection. 

Moreover, the creation of artificial vibrations intended 

to cause confusion in the recognition process is very 

difficult. Primarily, the seismic sensors are used to 

estimate the cadence of a person walking[6～8]. Bland 

has discussed the use of autoregressive coefficients 

in designing a footstep detection scheme from 

acoustic and seismic sensors[9]. Succi et al. proposed 

the use of signal kurtosis as a test statistic for 

detection of human footstep signals[10]. Park et al. 

have considered the problem of detecting and 

classifying perimeter intrusion using geophones
[11]

. 

Iyengar et al. fused acoustic and seismic signals for 

footstep detection[12]. Their work discusses a novel 

approach based on canonical correlation analysis and 

copula theory to establish a likelihood ratio test. 

Houston and McGaffigan have proposed using 

cadence features for detection of footsteps
[7]
.

All of the mentioned research have used the 

fundamental gait frequency, interval of cadence and 

amplitude of signal. Thus, they can not detect 

movement when footstep intervals are the same. 

To overcome this problem, we propose an adaptive  

detection algorithm and a classification algorithm 

based on single footstep. Unlike the previous 

research, the proposed algorithm can classify each 

footstep movement regardless of gait frequency and 

cadence interval.

This paper is organized as follows: In Section II, 

we describe the seismic signal dataset collected by 

the authors' group and extract the footsteps from the 

signal. Section III describes the feature extraction 

based on frequency spectrum and AR spectrogram 

for classification. We demonstrate experimental 

results in Section IV by using support vector 

machine(SVM). Section V concludes the paper with a 

brief summary and discussion.

Ⅱ. Adaptive footstep Detection 

When humans walk or run, the footsteps generate 

impulsive seismic signals that propagate through the 

earth surface. The average speed of the seismic 

signal was measured as 252.6 m/s, by using Rayleigh 

wave propagation[4]. Geophones are used to capture 

signals generated by these waves. We recorded the 

seismic data generated by the footsteps of the 

walking and running human using GS 11D seismic 

sensor(OYO Geospace company). The layout of the 

sensors deployed and the path trajectory of the 

human is shown in Fig. 1. The target is moving in 

the direction of the random and the distance between 

the target and the sensor is 2 ~  8.2m. Data is 

obtained from three persons of which heights and 

weights are summarized in Table1. Then, each 

person walks and runs according to the given 

movement scenario.

The received seismic signal has different amplitude 

and period due to the type of target, how the target 

is moving(walking, running) and depending on the 

distance between the target and the sensor. We may 

can classify the target and activities using cadence, 

peak amplitude and span of the signal if distance 

H1 H2 H3

hight(cm) 168 171 172

weight(kg) 78 79 70

표 1. 개인 신체 정보

Table 1. Personal physical information.

그림 1. 데이터 수집 시나리오

Fig. 1. Data collection scenario.
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between the target and sensor is constant. It is 

difficult to classify the object using only the seismic 

amplitude, when distance information between the 

target and the sensor is absent.

The received seismic signal has periodic 

characteristics by the continuity of the gait, i.e. the 

period when human is running is shorter than when 

human is walking. However, classification result 

depend on the behavior of the target's gait, targets 

walking quickly and slowly running cannot be 

classified. In addition, activity which is mixed human 

walk and run cannot be classified because the period 

is not constant. In this paper, we extract the single 

footstep from the seismic signal and classify the 

target activities using the footstep characteristics. 

Predicting performance under operational conditions 

add additional complexity due to wide variation in 

target and noise statistics. Especially, performance of 

the seismic sensor depends on the characteristic of 

background noise. If statistics of background noise  

are  not time-varying, the threshold   maintains 

the specified probability of false alarm. However, 

statistics of background noise depend on the 

component of soil. Even the same location, hence the 

same soil component, the noise statistics vary with 

temperature and humidity of the soil and even the 

air[5]. In order to maintain a constant probability of 

false alarm in the presence of non-stationary noise, 

an adaptive threshold method is required.

Signal detection is a classical problem of binary 

hypothesis testing. Under the null hypothesis , the 

received signal   is composed of noise alone. The 

background noise is the random Gaussian distribution 

in seismic sensor, and the envelope of the random 

Gaussian noise is Rayleigh distribution. 

      where ∼ 


  











 


        (1)

where 
  is the conditional variance and    

is the conditional probability density function of  

given that the envelope of received signal, and the 

signal is only noise. Eq. (1) depends on the signal 

parameter 
.

Under hypothesis , the received signal   is 

the sum of the transmitted signal and noise. In the 

footstep signal, there are the noise   and the 

signal  . The noise and signal are the random 

Gaussian distribution in the seismic sensor. If both 

random signals n(t) and s(t) are statistically 

independent Gaussian distributed with the same zero 

mean and the different variance (
, 

), then the 

variance of their sum equals the sum of their 

variance, i.e., if ∼ 
  and ∼ 

  

then 

    

  
 exp

     (2)

where   ∼ 
 

∼  ,   

is the conditional variance and    is the 

conditional probability density function of   given 

that the received signal is a random signal plus 

noise. Fig. 2 indicates the histogram and the 

probability density functions under   and .

The detection threshold level is calculated using 

Neyman-Pearson detection criterion and distribution 

parameter of noise. The threshold is obtained once 

그림 2. 신호와 잡음의 히스토그램 및 레일리 확률밀도
함수 회귀분석

Fig. 2. Histogram and Rayeligh pdf fitting of noise and 
signal.
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the probability of false alarm is set. Fig. 2 shows the 

distributions of noise and signal using collected data. 

As seen in Fig. 2, the probability of false alarm is 

the area under the pdf of background noise above the 

threshold level .




∞

 




∞





 exp
   exp











 




(3)

solving for   yields

  ln        (4)

where   is the scale parameter of the noise 

distribution. For example, under 10% of , the 

threshold voltage is   .

As shown in Fig. 2, the probability of detection is 

the area under the signal-plus-noise curve above the 

detection threshold.




∞

 




∞



 exp

   exp




 (5)

where   
 

, 
  is the variance of the noise 

and 
  is the variance of the signal.

The receiver operating characteristic(ROC) curve is 

also known as a relative operating characteristic 

curve, because it is a comparison of two operating 

characteristics (  and ) as the criterion changes 
[13]. As shown in Fig. 2, the probability of detection is 

the area under the signal-plus-noise curve above the 

detection threshold, and the probability of false alarm 

is the area under the noise-only curve above the 

threshold level . Using Eq. (3) and Eq. (5),   and 

  are present as Eq. (6).

   


 



   


 

        (6)

(a)

(b)

그림 3. (a) SNR 대 검출 확률, (b) ROC 곡선

Fig. 3. (a) Probability of detection versus SNR, 

(b) Receiver operating characteristic curve.

where  










 



   and   is the ratio 

of prior probabilities.

Fig. 3. shows the probability of detection versus 

SNR and ROC curve. Fig. 3(a) provides a quick view 

impact of varying system requirements on the 

required SNR. Lowering the false alarm rate results 

in higher required SNRs for the same probability of 

detection. Also, if the required probability of detection 

is reduced while maintaining the same false alarm 

rate, lower SNRs are required.

For preprocessing, Band pass filter with a center 

frequency within the frequency band of 10~50 ㎐ is 

used for eliminate the power noise(60㎐) and 

unknown noise(8㎐). For processing the footstep 

extraction sliding window and background noise 

adapted threshold are used. Fig. 4 shows the 

flowchart for the algorithm used in extracting the 

footsteps form seismic signal. By comparing 

windowed seismic signal with adaptive threshold, we 

save data when the location of maximum of absolute 

value of data is same as the median of data. 
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그림 4. 진동신호에서의 발자국 추출을 위한 흐름도

Fig. 4. Flowchart for footstep extraction from seismic 

signal.

그림 5. 진동신호에서의 발자국 추출

Fig. 5. Footstep extraction from seismic signal.

 

Window slides one sample and next segment of 

data is obtained and processed. To guarantee the 

performance under the variation of background noise, 

the algorithm updates the scale parameter of 

background noise every 1000 samples and recalculate 

the threshold. If the absolute value of background 

noise is smaller than the initial threshold, then it is 

accumulated in buffer, and updates the scale 

parameter. The buffer size of 1000 calculates the 

distribution of noise in 0.5sec with sampling 

frequency of 2000㎐. The threshold is updated using 

calculated scale parameter and the Eq. (4). 

Fig. 5 shows the intermediate result of footstep 

extraction. The blue solid line is the waveform of 

band pass filtered seismic signal. The red solid line 

indicates the noise adapted threshold using Eq. (4) 

under false alarm of 10%. The black circles are the 

centers of window for extracting footstep. After 

footstep extraction, all footsteps are normalized by 

power for feature extraction.

Ⅲ. Feature extraction 

1. Spectrum based features

The most common method for frequency analysis 

is the Fast Fourier transform(FFT). For the first 

feature vector, we use absolute value of FFT 

corresponding to 10Hz to 100㎐.

For second feature vector, we use the continuous 

wavelet transform(CWT) which use wavelet function 

for frequency representation. The CWT compares the 

signal to shifted and compressed or stretched 

versions of a wavelet and is defined as follows:

    


∞

∞





  



 

(7)

where   is a wavelet function,   is time, and   

is scale. The scale values determine the degree to 

which the wavelet is compressed or stretched. The 

low scale values compress the wavelet and correlate 

better with high frequencies. The CWT coefficients 

at lower scales represent energy in the input signal 

at higher frequencies, while CWT coefficients at 

higher scales represent energy in the input signal at 

lower frequencies. For the feature vector, we use 

square of CWT coefficients of scale from 10 to 

100.better with high frequencies. The CWT 

coefficients at lower scales represent energy in the 

input signal at higher frequencies, while CWT 

coefficients at higher scales represent energy in the 

input signal at lower frequencies. For the feature 

vector, we use square of CWT coefficients of scale 

from 10 to 100. 

For third feature, we use autoregressive(AR) 

spectrum analysis especially using the Burg 
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(a) (b)

(c) (d)

그림 6. 각 발자국 펄스 분석 (a) 걷기의 파형, (b) 뛰기

의 파형, (c) 걷기의 주파수 스펙트럼, (d) 뛰기

의 주파수 스펙트럼

Fig. 6. Analysis of each footstep pulse. (a) Waveform 
of walking, (b) Waveform of running, (c) 
Frequency spectrum of walking, (d) Frequency 
spectrum of running.

algorithm. The estimate of the power spectral 

density(PSD) of the signal is used as feature. We use 

16th order of AR prediction model for the estimate of 

PSD. In Fig. 6, we show waveforms and frequency 

spectrums obtained from FFT, CWT and AR 

prediction model. The solid blue lines in Fig 6(c) and 

Fig 6(d) indicate the FFT results of walking and  

running respectively. We can observe that the impact 

of running on the ground causes wider frequency 

band than that of walking. The dashed cyan line in 

Fig. 6(c) and Fig. 6(d) indicate the frequency 

spectrum form CWT results when gaussian 

function('gaus4') is used as wavelet and the resulting 

output power value for scale is converted to 

frequency. The dotted lines in Fig. 6(c) and Fig 6(d) 

indicates the AR spectrum of walking and running 

respectively. We can notice that the signal from     

walking has one peak of mid 20㎐, where signal from 

running has two peak of mid 20㎐ and mid 30㎐.

2. AR spectrogram based feature 

The footstep signatures of humans or animals 

obtained using seismic sensors are non-stationary in 

nature. By using this fact, we employ time-frequency 

analysis. Time-frequency analysis is to find what 

frequency occurs at what time in a signal. This is 

performed by mapping a one dimensional signal in 

the time domain, into a two dimensional 

time-frequency representation of the signal. 

Spectrogram is visualizations of the evolution of the 

PSD of signal swept through time. For PSD 

estimation, we use AR spectrum.   

Let AR spectrogram image     be a 

two-dimensional ×  array of intensity values. 

An image may also be considered as a vector of 

dimensional , so that image in this paper of size 

100 by 473 becomes a vector 47300-dimensional 

space. An ensemble of images, then, maps to a 

collection points in this huge space. Nevertheless 

image can be described by a relatively low 

dimensional subspace. For extract the feature vector 

in AR spectrogram analysis, we use the eigen-image 

technique which is widely used in face recognition 

and image processing area. The eigen-image 

technique functions by projecting spectrogram images 

onto a feature space that spans the significant 

variations among known spectrogram images. The 

significant features are the eigenvectors of the set of 

images. The projection operation characterizes an 

individual spectrogram image by a weighted sum of 

the eigen-image features, and so to classification a 

particular spectrogram image it is necessary only to 

compare these weights to those of known 

individuals[13]. The goal of AR spectrogram analysis 

is to extract weights as a feature vector for 

classification. AR spectrogram are used as the image 

for the eigen-image. In what follows, describe how to 

calculate the weight in details.

Let the training set of AR spectrogram images be 








  



, each vector is of length ×, 

describes an ×  image. Each spectrogram differs 

from the average by the vector 









 , where 

the average spectrogram of the set is defined by 
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


 







. The covariance matrix is Eq. (8).

 
 
 







                 (8)

where the matrix  


 


⋯


  . The matrix 

 , however, is ×, and determining the 

  eigenvectors and eigenvalues is an intractable 

task for typical spectrogram size. If the number of 

data points in the image space is less than the 

dimension of space( ), there will be only 

 , rather than , meaningful eigenvectors. 

Consider the eigenvector 



 of   such that 





 



. Pre-multiplying both side by , we 

have Eq. (9).

 

 


    (9)

From which we see that 



 are the eigenvectors for 

 . Following analysis, we construct the 

×  matrix  , where 









, and 

find the   eigenvectors, 



, of  . In practice, a 

smaller  ′( ′  ) is sufficient for identification, 

since accurate reconstruction of the AR spectrogram 

image is not a requirement. The eigenimages span an 

 ′-dimensional subspace of the original   image 

space. In many of our test cases, based on   

AR spectrogram images,  ′   eigenimages were 

used. A new AR spectrogram image(

) is 

transformed into its eigenimage components by a 

simple operation,

 



 

   (10)

for   … ′ , The weights from a vector 


   ⋯  ′   hat describes the contribution of 

each eigen-image in representing the input AR 

spectrogram image, treating the eigen-images as a 

basis set for AR spectrogram images. The weight 

vector may then be used as a feature vector.

(a) (b)

(c) (d)

(e) (f)

그림 7. 각 발자국 분석 (a) 걷기의 파형, (b) 뛰기의 파

형, (c) 걷기의 AR 스펙트로그램, (d) 뛰기의 

AR 스펙트로그램, (e) 걷기의 가중치 벡터, (f) 

뛰기의 가중치 벡터

Fig. 7. Analysis of each footstep (a) Waveform of 
walking, (b) Waveform of running, (c) AR 
spectrogram for walking, (d) AR spectrogram for 
running, (e) Weight vector of walking. (f) Weight 
vector of running.

The proposed algorithm uses eigenvalue 

decomposition and matrix-vector operation. Major 

computation is eigenvalue decomposition of which 

computational complexity is  . Since the 

    in our case,    and matrix-vector 

operation are added for feature extraction.

Fig. 7 shows feature extraction based on AR 

spectrogram. Fig. 7(c) and Fig. 7(d) indicate the AR 

spectrogram of walking and running respectively. For 

AR processing sliding window is used, which size is 

32 millisecond and sliding 0.5 millisecond, and next 

segment of data is obtained and processed. The order 

of an AR prediction model is 16th order. The weight 

vectors(

) are indicated in Fig. 7(e) and Fig. 7(f).
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(a)

(b) (c)

그림 8. 15㏈ SNR 잡음이 있는 뛰는 발자국에 대한 분

석 (a) 파형, (b) 주파수 스펙트럼, (c) AR 스펙

트로그램

Fig. 8. Analysis of running footstep with noise, 15㏈ 

SNR  (a) Waveform, (b) Frequency spectrum, 

(c) AR spectrogram.

3. Feature comparison in noise environment

In order to compare the change in accuracy for 

noise, we analyze feature using footstep added white 

Gaussian noise with various SNR. Fig.7 indicate the 

spectrum and AR spectrogram of Fig 6(b) added 15㏈ 

white Gaussian noise. Fig 6(d) and Fig 8(b) indicate 

the spectrum of running footstep and that with noise 

respectively. In comparison with two spectrums, noise 

has influence on FFT, CWT and AR spectrum, e.g., 

AR spectrum of clean footstep has 2 peak mid-20 

and mid-30 ㎐, but AR spectrum of footstep added 

noise has only one peak in mid-20 ㎐. In Fig 7(d) is 

AR spectrogram of running and AR spectrogram of 

added 15㏈ white Gaussian noise is in Fig 8(c). Noise 

has no direct effect on AR spectrogram until 15㏈.

Ⅳ. Classification results 

1. Single footstep result

In this section, we present experimental results. In 

Table 2, we describe the feature vectors for 

classification. The classification algorithms used in 

this paper is linear SVM. 10% of data set is used for 

Analysis Feature Size

Spectrum 

FFT
Absolute value of FFT 

frequency 10~100㎐. 
×

CWT
Square of CWT coefficients of 

10~100 scale. ×

AR
16th order AR spectrum 

frequency 10~100㎐. 
×

Spectrogram AR
Weight vector from 

spectrogram image. 
×

표 2. 특징 벡터

Table 2. Feature vectors.

Feature walking running

FFT 80.95 80.26

CWT 85.71 88.16

AR spectrum 85.71 89.47

AR spectrogram 93.65 97.74

표 3. 제안된 특징벡터를 이용한 분류결과(%) 비교

Table 3. Comparison of the classification accuracy(%) by 

using proposed feature vector.

그림 9. SNR에 대한 FFT, CWT, AR 스펙트럼, AR 스펙

트로그램의 정확도(%) 비교

Fig. 9. Comparison of accuracy(%) curve for the FFT, 

CWT, AR spectrum and AR spectrogram with 

various SNR.

training, and the rest of data set is used for the 

performance evaluation test. We evaluate the 

classification performance of features using FFT, 

CWT, AR spectrum and AR spectrogram of the 

seismic footstep dataset.

The results of based on spectrum and spectrogram 

analysis are shown in table 3. In frequency spectrum, 

the accuracy by using CWT and AR spectrum are 

roughly 5 to 9% better than FFT. AR spectrum 

shows the best accuracy result among frequency 

analysis as 85.71% of walking and 89.47% of running 
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(a) (b)

그림 10. 연속적인 동작의 시나리오, AR　스펙트로그램 및 분류 결과, (a) 첫 번째 시나리오: 걷기3뛰기3걷기3뛰기3걷기3, 

(b) 두 번째 시나리오: 발자국의 간격이 동일한 걷기, 뛰기, 걷기

Fig. 10. Scenario and AR spectrogram of sequence of activities and their classification results (a) First scenario: 

W3R3W3R3W3, (b) Second scenario: WRW with same interval of footstep.

activities.

Classification accuracy according to various SNR is 

shown in Fig. 9. These curve indicate that 

classification accuracy using AR spectrogram is 

robust against background noise. Performance of AR 

spectrogram at SNR of 15㏈ is above 80%, and 

shows reduction of 9% compared with that at SNR 

of 30㏈. On the other hand, performance obtained 

from FFT, CWT, and AR spectrum decreases 

approximately 20%. This indicates that the algorithm 

based on AR spectrogram is the best  in noisy 

environment.

2. Continuos footsteps result 

In practice, human behaviors consist of a sequence 

of transit activities. If we can reliably classify 

individual footstep as running and walking, then it 

would be useful to many applications. In this section, 

we show the classification of each single step in 

continuos movement. To demonstrate the performance 

of the proposed AR spectrogram algorithm, we 

consider two sequential movement undertaken by 

person H2 whose height is 171cm and weight is 

79kg.

The first movement is obtained when human walk 
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three steps and run three steps repeatedly by passing  

horizontal direction to seismic sensor. The movement 

path, activities, AR spectrogram, waveform and 

classification result are shown in Fig 10(a). Also the 

classification result of SVM is shown as red line. 

The positive red line represents walking and negative 

red line represents running. As shown in Fig 10(a), 

the proposed algorithm detect the each foot step and 

classify the activity of each step. 

The second movement is composed of three 

movement. The human walks horizontally across the 

seismic sensor, runs toward seismic sensor and then 

finally walks across sensor at closer distance.

Note that footstep interval of running is similar to 

that of walking. The frequency of walking step 

interval is 1.8 to 2.0 ㎐ and running step is 2.4 to 3㎐
[5],[8] in previous researches. With these algorithms 

using footstep interval, all step are classified as 

walking since the estimated step interval frequency is 

2.07Hz. However, we can notice that the proposed 

algorithm can detect the footstep and classify the 

each activity as shown in the last graph of Fig. 

10(b). The first movement and the last movement are 

classified as walking, and the second movement 

between two walking movements are classified as 

running, even the footstep intervals are the same. 

The results of two experiments shows the validity 

and feasibility of the proposed algorithm. Thus the 

proposed algorithm can be used for human activity 

detection and classification in complicated and 

continuos movement.

V. Discussion and conclusion

In this paper, we proposed algorithms for single 

footstep detection and classification of signal obtained 

seismic sensor. For footstep detection, we propose an 

adaptive algorithm using background noise level. The 

frequency spectrums of FFT, CWT, AR modeling 

and AR spectrogram are used as feature vector and 

linear SVM is used for training and classification. 

The classification accuracy based on AR 

spectrogram was found to be 93.65% of walking and 

94.74% of running activities. The AR spectrogram 

based algorithm does not show much classification 

performance degradation until SNR reaches 15㏈. 

However, algorithms using frequency information 

show much performance degradation. 

Also we showed outstanding movement 

classification results with two continuous and mixed 

walking and running data. Even when the footstep 

interval of running is similar with that of walking, 

the proposed algorithm shows perfect classification of 

single footstep. Thus, the proposed algorithm could 

be a good candidate for determining the single foot 

step and continuous foot step movement as well.
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