• Title/Summary/Keyword: Footings

Search Result 129, Processing Time 0.03 seconds

Analysis of the Earth Resistance for the Tower Footing of T/L (송전선로 철탑기초의 접지저항 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.344-346
    • /
    • 2001
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. This paper presents the outline of the tower footings for the transmission lines having been used in KEPCO and analyzes the earth resistance for operation method of the tower footing, that is contact presence for the anchor and reinforcing rob of the tower and foundation presence of the underground wiring.

  • PDF

A Case Study on e-Collaboration of Federal Structure (Federal 형태의 e비즈니스 협업에 대한 사례연구)

  • Park, Jae-Chon;Yang, Je-Min
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.4
    • /
    • pp.35-52
    • /
    • 2005
  • Collaboration among companies is being emphasized, as e-business is expanding its domain. Generally the collaboration it discussed on the basis of business and technology. In reality, however, collaboration is determined by competitive power of corporation. From this point of view, this study examines a type of collaboration which is effective when the parties concerned have equal footings.

  • PDF

3-DIMENSIONAL DYNAMIC INFINITE ELEMENTS IN CARTESIAN COORDINATES FOR MULTI-LAYERED HALF-SPACE (3차원 수직 좌표계의 지반-구조물 상호작용해석을 위한 동적 무한요소의 개발)

  • Seo, Choon-Gyo;Yun, Chung-Bang
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.628-636
    • /
    • 2006
  • This paper presents 3D infinite elements in Cartesian coordinates for the elastodynamic problem in multi-layered half-space. Five kinds of infinite elements are developed by using approximate expressions of multiple wave components for the wave function in exterior far-field soil region. They are horizontal, horizontal-corner, vertical, vertical-corner and vertical-horizontal-corner elements. The elements can be used for the multi-wave propagating problem. Numerical example analyses are presented for rigid disk, square footings and embedded footing on homogeneous and layered half-space. The numerical results obtained show the effectiveness of the proposed infinite elements.

  • PDF

Seismic bearing capacity of shallow footings on cement-improved soils

  • Kholdebarin, Alireza;Massumi, Ali;Davoodi, Mohammad
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.179-190
    • /
    • 2016
  • A single rigid footing constructed on sandy-clay soil was modeled and analyzed using FLAC software under static conditions and vertical ground motion using three accelerograms. Dynamic analysis was repeated by changing the elastic and plastic parameters of the soil by changing the percentage of cement grouting (2, 4 and 6 %). The load-settlement curves were plotted and their bearing capacities compared under different conditions. Vertical settlement contours and time histories of settlement were plotted and analyzed for treated and untreated soil for the different percentages of cement. The results demonstrate that adding 2, 4 and 6 % of cement under specific conditions increased the dynamic bearing capacity 2.7, 4.2 and 7.0 times, respectively.

Footing settlement formula based on multi-variable regression analyses

  • Hamderi, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2019
  • The formulas offered so far on the settlement of raft footings provide only a rough estimate of the actual settlement. One of the best ways to make an accurate estimation is to conduct 3-dimensional finite element analyses. However, the required procedure for these analyses is comparatively cumbersome and expensive and needs a bit more expertise. In order to address this issue, in this study, a raft footing settlement formula was developed based on ninety finite element model configurations. The formula was derived using multi-parameter exponential regression analyses. The settlement formula incorporates the dimensions and the elastic modulus of a rectangular raft, vertical uniform pressure and soil moduli and Poisson's ratios up to 5 layers. In addition to this, an equation was offered for the estimation of average deflection of the raft. The proposed formula was checked against 3 well-documented case studies. The formula that is derived from 3D finite element analyses is useful in optimising the raft properties.

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle (모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2014
  • Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

Evaluation of Structural Stability of Plastic Greenhouses with Steel Spiral Piles on Reclaimed Lands (간척지에서 강재 나선말뚝기초를 적용한 플라스틱 온실의 안전성 평가)

  • Yum, Sung Hyun;Lee, Won Bok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • This study was carried out to estimate structural stabilities in respect of ground footings of plastic greenhouses on reclaimed lands. A 6m-wide multi-span plastic greenhouse with steel spiral piles as well as two 8.2m-wide single-span greenhouses with steel spiral piles and continuous pipe foundation respectively were built up on a reclaimed land with a SPT N-Value of 2 and measured how much the greenhouses were lifted up and subsided. In addition, the uplift capacity of three kinds of spiral piles(${\phi}50$, ${\phi}75$ and ${\phi}100$) was determined on a nearby reclaimed land. The results showed that the greenhouses with spiral piles had a slight vertical displacement like moving up and down but the scales of the rising up and sinking were negligible when compared to that of the greenhouses. The vertical displacement of the multi-span greenhouse ranged from +9.0mm(uplift) to -11.5mm(subsidence). As for the single-span greenhouses with spiral piles and continuous pipe foundation, the measurements showed that it varied from +1.3mm to -7.7mm and from +0.9mm to -11.2mm, respectively. The allowable uplift capacity of spiral piles could all be determined under criteria of ultimate load and accordingly had a value of 0.40kN, 1.0kN and 2.5kN, respectively. It was not entirely certain enough to make a final judgement on structural stabilities in respect of ground footings, it appeared likely however that the greenhouses with steel spiral piles was tentatively observed without any problems on reclaimed lands within the period.

Displacement of Sand Layer during Deep Excavation (깊은 굴착에 따른 사질토 지반의 변형)

  • 유태성;신종호
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.81-92
    • /
    • 1985
  • Braced excavation for a new building was carried out at a very close proximity of an existing tall building of T.hick columns are supported by indict.ideal spread footings on sand layer The excavation was planned to reach far below the footing level of the existing building. To assess the foundation performance and stability of the existing building, the behavior of 9round subjected to loss of confinement from excavation was analytically studied using finite element method. Field instrumentation was also conducted to monitor the actual ground responses during excavation. Based on these studies, various remedial measures weere taken to minimize the adverse effects to the building, and excavation was successfully completed. This paper presents the results from the analytical studies and field monitoring, and measured and measured responses at different stages of excavation.

  • PDF

Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space (3차원 지반-구조물 상호작용해석을 위한 입방형 무한요소)

  • Seo, Choon-Gyo;Yun, Chung-Bang;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents 3D infinite elements for the elastodynamic problem with multi-layered half-space. Five different types of infinite elements are formulated by using approximate expressions of multiple wave components for the wave function in multi-layered soil media. They are horizontal, horizontal-corner, vortical, vertical-corner and vertical-horizontal-comer infinite elements. The elements can effectively be used for simulating wane radiation problems with multiple wave components. Numerical example analyses are presented for rigid disk, square footings and embedded footing on homogeneous and layered half-space. The numerical results show the effectiveness of the proposed infinite elements.

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF