• Title/Summary/Keyword: Foot pressure analysis

Search Result 191, Processing Time 0.023 seconds

Development of a Pressure Distribution Measurement System (압력분포 측정시스템의 개발)

  • 정진호;이기원;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 2000
  • Pressure distributions of the soft tissue are valuable for understanding and diagnosing the disease characteristics due to the mechanical loading. Our system measures dynamic pressure distributions in real-time under the general PC environment, and analyzes various foot disorders. Main features of the developed system are as follows: (1) With the resistive pressure sensor matrix of 40${\times}$40 cells, the data is sent to the PC with the maximum sampling rate of 40 frames/sec. (2) For each frame, contact area, pressure and force are analyzed by graphic forms. Thus, various biomechanical parameters are easily determined at specific areas of interests. (3) A certain stance phase can be chosen for the analysis from the continuous walking, and the detailed biomechanical analysis can be done according to an arbitrary line dividing anterior/posterior or medial/lateral plantar areas. (4) The center of pressure (COP) is calculated and traced from the pressure distribution data, and thus the movement of the COP is monitored in detail. A few experiments revealed that our system successfully measured the dynamic plantar distribution during normal walking.

  • PDF

Pressure Analysis of the Plantar Musculoskeletal Fascia Using a Fine Finite-Element Model (인체 족부 근골격계 상세 유한요소모델링을 통한 족저압 해석)

  • Jeon, Seong-Mo;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1237-1242
    • /
    • 2011
  • The A detailed 3D finite-element analysis model of a human foot has been developed by converting CT scan images to 3D CAD models in order to analyze the distribution of plantar pressure. The 3D foot model includes all muscles, bones, and skin. On the basis of this model and the pressure distribution results, shoes for diabetes patients, which can make the plantar pressure distribution uniform, may be designed through finite-element contact analysis.

Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis (걸음걸이 분석 기반의 파킨슨병 분류를 위한 특징 추출)

  • Lee, Sang-Hong;Lim, Joon-S.;Shin, Dong-Kun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2010
  • This paper presents a measure to classify healthy persons and Parkinson disease patients from the foot pressure of healthy persons and that of Parkinson disease patients using gait analysis based characteristics extraction and Neural Network with Weighted Fuzzy Membership Functions (NEWFM). To extract the inputs to be used in NEWFM, in the first step, the foot pressure data provided by the PhysioBank and changes in foot pressure over time were used to extract four characteristics respectively. In the second step, wavelet coefficients were extracted from the eight characteristics extracted from the previous stage using the wavelet transform (WT). In the final step, 40 inputs were extracted from the extracted wavelet coefficients using statistical methods including the frequency distribution of signals and the amount of variability in the frequency distribution. NEWFM showed high accuracy in the case of the characteristics obtained using differences between the left foot pressure and the right food pressure and in the case of the characteristics obtained using differences in changes in foot pressure over time when healthy persons and Parkinson disease patients were classified by extracting eight characteristics from foot pressure data. Based on these results, the fact that differences between the left and right foot pressures of Parkinson disease patients who show a characteristic of dragging their feet in gaits were relatively smaller than those of healthy persons could be identified through this experiment.

The Study on Workload Reducing Effects of Multi-Elastic Insoles (다탄성 Insole의 Workload 감소 효과에 관한 연구)

  • Lee, Chang-Min;Lee, Kyun-Deuk;Oh, Yeon-Ju;Kim, Jin-Hoon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.157-165
    • /
    • 2007
  • The Work-Related Musculoskeletal Disorders (WMSDs) can be occurred by various factors such as repetition, forceful exertions and awkward postures. Especially, occurrences of the WMSDs on the waist and lower limb are reported in workplaces, demanded standing postures for a long time, in service and manufacturing industry. The static and standing postures without movement for a long time increase work loads to the lower limb and the waist. Accordingly, anti-fatigue mat or anti-fatigue insole is used as a preventing device of the WMSDs. However anti-fatigue mats are limited in space and movement. In this study, multi-elastic insoles are designed and shown the effects of the workload reduction for a long time under the standing work. The foot pressures and EMG (Electromyography) are measured at 0 hour and after 2 hours by 6 health students in their twenties. The 6 prototype insoles are designed with three elastic (Low, Medium and High). These insoles are compared with no insole (insole type 7) as control group. The EMG measurement was conducted to waist (erector spinae muscle), thigh (vastus lateralis muscle) and calf (gastrocnemius muscle). The foot pressure is analyzed by mean pressure value and the EMG analysis is investigated through MF (Median Frequency), MPF (Mean Power Frequency) and ZCR (Zero Crossing Rate). The results of the foot pressure show that the multi-elastic insoles had smaller foot pressure value than that of no-insole. Moreover, Insole 2 and Insole 3 have the smallest increasing rate in foot pressure. The EMG results show that the multi-elastic insoles had smaller EMG shift value than that of no-insole in 2 hour, and then shift value shows the smallest value in Insole 2. Therefore, this study presents that the multi-elastic insoles have reducing effects of the work load for a long time standing work in both side of foot pressure and EMG.

Comparison Analysis of Foot Pressure Characteristics during Walking in Stroke and Normal Elderly (뇌졸중 고령자와 정상인의 보행 시 족압 변화 및 비교 분석)

  • Jung, NamKyo;Park, Se Jin;Kwon, Soon-Hyun;Jun, Jongarm;Yu, Jaehak
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.36-43
    • /
    • 2021
  • Stroke disease is one of the leading causes of death worldwide, and in particular, it is the most important causative disease that causes disability in the elderly. Since stroke disease often causes death or serious disability, active primary prevention and early detection of prognostic symptoms are very important. In particular, it is necessary to detect and accurately predict stroke prognostic symptoms in daily life and prompt diagnosis and treatment by medical staff. In recent studies, image analysis such as computed tomography (CT) or magnetic resonance imaging (MRI) is mostly used as a methodology for predicting prognostic symptoms in stroke patients. However, this approach has limitations in terms of long test time and high cost. In this paper, we experimented with clinical data on how stroke disease affects foot pressure in elderly in walking. Experiments have shown that there is a significant difference in * p < .05 in 12 cells between the stroke elderly and the normal elderly during walking. As a result, it is significant that we found a significant difference in the gait patterns in daily life of the stroke elderly and the normal elderly.

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

The Development of the Insole for Gait Load Decreasing by Biomechanics Analysis (생체역학적 분석을 통한 보행 부하 감소용 인솔 개발)

  • Lee, Chang-Min;Oh, Yeon-Ju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.23-30
    • /
    • 2005
  • The mailman's shoes should be designed in due consideration of occupational features they spend most of times to walk. For that reason, the shoes required functions to reduce the foot fatigue and to protect body by dispersing the body weight to the whole foot. In this research, for the functional improvement of the insole, insoles are investigated and analyzed by biomechanics experimentation. Under the base of these experimental results, we develop insoles that can reduce the body load and muscular-skeletal disorder. The pressures are concentrated on the metatarsus and heel by the result of analyzing pressure distributions of the using shoes. Accordingly, we offer the prototype functional insole that is ranked from high pressure to low pressure on the base of a shock absorb function. This prototype functional insole is examined for statistical significance by pressure distribution areas. The experimental results show that pressure areas are dispersed to whole foot, for this reason, pressures of the metatarsus and heel are reduced. Results of this research can not only improve the function of insoles which is suitable for occupational features, but also be a base on constructing data bases for biomechanics gait insoles.

Pressure Analysis of Plantar Musculoskeletal Fascia while Walking using Finite Element Analyses (상세유한요소 모델링을 통한 보행중인 인체족부의 족저압 해석)

  • Jeon, Seong-Mo;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.913-920
    • /
    • 2012
  • An efficient 3D finite element walking model that considers the detailed shapes of muscles, ligaments, bones, skin, and soles was developed based on a real computed tomography (CT) scan image of a foot, and nonlinear contact analyses were performed to investigate pressure changes. The highest pressure occurs at the rear bottom of the foot when standing and walking. The pressure on the outsole with a curved foot bottom surface is lessened and distributed over a wider area than in the case of a flat outsole. The result shows that a shoe sole shape optimized for diabetes patients can relieve the foot pressure concentration and prevent further worsening of symptoms.

Analysis of Plantar Foot Pressure During Golf Swing Motion of Pro & Amateur Golfer (프로와 아마추어 골퍼의 골프스윙 동작시 족저압력 비교 분석)

  • Lee, Joong-Sook;Lee, Dong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.41-55
    • /
    • 2005
  • In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Regional change of force acting, in address, is evenly distributed on both feet. In back swing top, 76% on right foot, 75% on left foot as impact, and 86% on left foot as finish. As regional force acting, in address, pros get high marks on rare and inside of right foot and rare and outside for amateurs. In back swing top, it is higher as fore and inside of left foot, pros as rare part of right foot and amateurs as forefoot. In impact, it is higher for pros and amateurs in outside and rare part of left foot and fore and inside of right foot. In finish, for both pros and amateurs, it is higher for outside and rare parts of left foot. 2. For each club, forces are evenly distributed on both feet in address. In back swing top, the shorter a club is, the higher impact on right foot and the higher finish distribution on left foot. For all the clubs used, in each region, pros get higher on rare and inside of right foot and as amateurs on rare and outside of left foot in address. In back swing top, for all clubs, pros get higher on rare and outside of right foot as fore and outside for amateurs. In impact acting, for all clubs, rare and outside of left foot get higher. In finish, force concentrates on rarefoot. 3. On both feet force, right foot forces of amateurs is higher than those of pros in back swing top. In impact and finish, pros get higher on left foot.

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION (신발 설계 및 평가를 위한 컴퓨터 모델)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.