• 제목/요약/키워드: Foot pressure analysis

검색결과 192건 처리시간 0.029초

상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석 (Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.

회전점프-착지 시 회전방향이 안정성에 미치는 영향 (Effects on Stability of Rotational Direction after Rotational Jump-Landings)

  • Park, Jun Sung;Woo, Byung Hoon
    • 한국운동역학회지
    • /
    • 제32권3호
    • /
    • pp.80-86
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effects of three rotational jump conditions (standing jump, left rotational jump and right rotational jump) on stability through center of pressure (COP) and EMG variables analysis. Method: A total of 16 college students (age: 24.13 ± 7.17 years, height: 169.24 ± 8.23 cm, weight: 65.65 ± 13.88 kg) participated in this study. The study used wireless two COP plates and wireless eight channel EMG. The analyized variables were 11 variables for COP and RMS for EMG, which were analyzed using one-way analysis of variance with repeated measures according to three rotational jump conditions. Results: Among the COP variables, left rotational jump (LRJ) and right rotational jump (RRJ) were larger than standing jump (SJ) for left and right amplitude, area, total displacement, and average velocity for both feet among the variables of COP, and for area of the left foot, RRJ was larger than that of SJ. Among the EMG variables, there was no statistical difference between the muscle activations, but the muscle activity was significantly higher in the order of RRJ, LRJ, and SJ according to direction of rotation. Conclusion: Although the results of COP and EMG were not consistent through this study, it can be expected that the differences in COP was due to the amount of rotation during rotational jump-landing in the left and right directions, and that the EMG is determined by the lateral movements required for rotation.

Relationship between 3D Ground Reaction Force and Leg Length Discrepancy during Gait among Standing Workers

  • Kim, Yong-Wook
    • PNF and Movement
    • /
    • 제20권1호
    • /
    • pp.59-66
    • /
    • 2022
  • Purpose: The aim of this research was to verify the relationship between three-dimensional (3D) ground reaction force (GRF) and severity of leg length discrepancy (LLD) while walking at a normal speed. It used a 3D motion analysis system with force platforms in standing workers with LLD. Methods: Subjects comprising 45 standing workers with LLD were selected. Two force platforms were used to acquire 3D GRF data based on a motion analysis system during gait. Vicon Nexus and Visual3D v6 Professional software were used to analyze kinetic GRF data. The subjects were asked to walk on a walkway with 40 infrared reflective markers attached to their lower extremities to collect 3D GRF data. Results: The results indicated the maximal force in the posterior and lateral direction of the long limb occurring in the early stance phase during gait had significant positive correlation with LLD severity (r = 0.664~0.738, p <0.01). In addition, the maximal force medial direction of the long limb occurring in the late stance phase showed a highly positive correlation with the LLD measurement (r = 0.527, p <0.01). Conclusion: Our results indicate that greater measured LLD severity results in more plantar pressure occurring in the foot area during heel contact to loading response of the stance phase and the stance push-off period during gait.

실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합 (Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects)

  • 조수민;정윤수;김현수;박민석;이동한;감동익;장순민;라윤상;차경제;김형우;서경덕;최동휘
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.86-92
    • /
    • 2022
  • 최근 COVID-19 팬데믹 등 다양한 이유로 인해 바이오 헬스케어 시장이 전세계적으로 활성화되고 있다. 그 중, 생체정보 측정 및 분석 기술은 앞으로의 기술적 혁신성과 사회경제적 파급효과를 불러일으킬 것으로 예측된다. 기존의 시스템은 생체 신호를 받아 신호 처리를 하는 과정에서 신호 송×수신부, 운영체제, 센서, 그리고 인터페이스를 구동하기 위한 대용량 배터리를 필수적으로 요구한다. 하지만, 배터리 용량의 한계가 인해 시×공간적인 기기 사용의 제한을 야기하며, 이는 사용자의 헬스케어 모니터링에 필요한 데이터의 단절에 대한 원인으로 작용할 수 있으므로 헬스케어 디바이스의 큰 걸림돌 중의 하나이다. 본 연구에서는 생체정보 측정 장치에 접촉대전 효과(Triboelectric effects)와 전자기유도 효과(Electro-magnetic effects)를 융합하여, 외부 전원을 요구하지 않는 독립 구동이 가능한 시스템을 구성하여 시×공간적으로 사용 제한이 없는 소형 생체정보 측정 모듈을 설계 및 검증했다. 특히, 다양한 헬스케어 모니터링 중 족압 계측을 통해 사용자의 보행 습관 등을 파악할 수 있는 무선 족압 계측 모니터링 시스템을 검증했다. 보행 시 발생하는 접촉×분리 움직임에서 접촉대전 효과를 이용한 효과적인 압력 센서와 압력에 따른 전기적 출력신호를 통해 족압 센서를 만들고, 축전기를 이용한 신호처리 회로를 통해 이의 동적 거동을 계측할 수 있다. 또한, 출력된 전기신호의 무선 송×수신용 전원으로 사용하기 위해 전자기 유도 효과를 이용하여 보행 시 생기는 생체역학적 에너지를 전기에너지로 수확했다. 따라서, 이번 연구는 사용자가 제한적인 배터리 용량 때문에 생기는 충전에 대한 불편함을 줄일 수 있고, 뿐만 아니라 데이터 단절에 대한 문제점을 극복할 수 있는 방법으로서 큰 잠재력을 보여줌을 시사한다.

F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책 (Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P)

  • 정정호;유승엽;이평직;전진용;조아형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

A Study on Effect of Temperature of Press Forging on AZ31 Magnesium Alloy

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.66-71
    • /
    • 2004
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast-ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, it is studied about the forming characteristics of press forging of AZ31 magnesium alloy by MSC/MARC in case of material having one boss and MSC/Supeiforge in case of material having multi-boss with heat transfer analysis during deformation at elevated temperature. For these results it is simulated about temperature distribution, strain distribution, and stress distribution of AZ31 Magnesium alloy. During the press forging, foot regions of bosses showed greater temperature rise than other areas of AZ31 sheet. Finally the plastic strain of AZ31 sheet did not remarkably vary with increasing temperature from 373 to 473K, while it significantly increased as the forming temperature increased from 473 to 573K, which is related with the change in micro-structures, such as dynamic re-crystallization occurring during the deformation process.

  • PDF

스마트 슈즈의 에너지 하베스팅 기능향상을 위한 복합재료 프레임 특성평가 (Characterization of Composite Frame for Enhancing Energy Harvesting Function of a Smart Shoes)

  • 이호석;정인준;장승환
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.400-405
    • /
    • 2021
  • 본 연구에서는 인장 시 에너지 하베스팅을 하는 Polyvinylidene Fluoride(PVDF) 리본 하베스터를 신발에 접목한 스마트 슈즈의 에너지 하베스팅 효율을 증가시키기 위한 복합재료 프레임을 설계하였다. 프레임의 하중방향 변형량을 최소화하기 위해 이방성 재료인 탄소 연속 섬유를 사용하여 설계하고 3D 프린터를 이용하여 복잡한 형상을 제작하였다. 보행 시 발생하는 하중에 의한 안창과 중창의 변형량을 계산하기 위해 스프링 요소를 이용하여 안창과 중창을 모델링 하였다. 유한요소 해석을 사용하여 보행 시 스마트 슈즈에 장착된 리본형 하베스터의 인장량을 계산하였다. 예측된 하베스터의 최종 인장 길이 정보는 스마트 슈즈의 에너지 하베스팅 효율 증대에 활용할 수 있을 것으로 기대된다.

Electron Firehose Instabilities in High-β Intracluster Medium

  • Kim, Sunjung;Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.55.2-55.2
    • /
    • 2019
  • The firehose instability is driven by a pressure anisotropy in a magnetized plasma when the temperature along the magnetic field is higher than the perpendicular temperature. Such condition occurs commonly in astrophysical and space environments, for instance, when there are beams aligned with the background magnetic field. Recently, it was argued that, in weak quasi-perpendicular shocks in the high-β intracluster medium (ICM), shock-reflected electrons propagating upstream cause the temperature anisotropy. This electron temperature anisotropy can trigger the electron firehose instability (EFI), which excites oblique waves in the shock foot. Scattering of electrons by these waves enables multiple cycles of shock drift acceleration (SDA) in the preshock region, leading to the electron injection to diffusive shock acceleration (DSA). In the study, the kinetic properties of the EFI are examined by the linear stability analysis based on the kinetic Vlasov-Maxwell theory and then further investigated by 2D Particle-in-Cell (PIC) simulations, especially focusing on those in high-β (β~100) plasmas. We then discuss the basic properties of the firehose instability, and the implication of our work on electron acceleration in ICM shock.

  • PDF

재가 중증 뇌병변 장애인의 기능상태 및 케어요구 목록 평가 (Analysis of Functional Status and Care Needs among the Community-Dwelling Disabled Persons with Cerebral Impairment)

  • 고려진;유원섭;이꽃메;이소나;김교현;오희영
    • 간호행정학회지
    • /
    • 제14권4호
    • /
    • pp.421-431
    • /
    • 2008
  • Purpose: Using comprehensive and valid instrument, MDS-HC 2.0, this study aimed to analyze the functional status and to evaluate the care needs of the community-dwelling disabled with cerebral impairment. Method: With a convenient sample of 88 disabled with cerebral impairment, the data were collected at a community health center located in rural area in Choongchung providence in August 2005. Subject's functional status and care needs were evaluated using Minimum Data Set-Home Care version 2.0. Result: Significant proportion of subjects were totally dependent for locomotion-outdoor (26.1%), personal hygiene (24.1%), bathing (24.1%). For IADLs, over 40% of subjects were totally dependent for ordinary house work, managing finances, or shopping. Top five ranked care needs were preventive health care measures (100%), communication disorders (71.6%), visual function (55.7%), health promotion (52.3%), and pressure ulcers (48.9%). The proportion of triggered clinical assessment protocols were significantly higher in disability level I group for the risk of institutionalization (p=<.001), communication disorders (p=.004), cognitive problems (p=.001), pressure ulcers (p=<.001), skin and foot conditions (p=.010), and urinary incontinence and indwelling catheters (p=<.001). Conclusions: It is necessary to provide community based rehabilitation services that are individualized for their service needs thus enhance optimal level of functioning.

  • PDF

Lateral Symmetry of Center of Pressure During Walking in Patients With Unilateral Knee Osteoarthritis

  • Kim, Si-hyun;Park, Kyue-nam
    • 한국전문물리치료학회지
    • /
    • 제28권1호
    • /
    • pp.77-83
    • /
    • 2021
  • Background: Although symmetry of spatio-temporal parameter and center of pressure (COP) shift during walking is associated with knee adduction moment, research on clinical association with knee osteoarthritis (OA)-related knee pain and functional scores is lacking. Objects: The aims were 1) to compare symmetry of gait parameters and COP-shift in patients with unilateral knee OA and pain and matched controls, and 2) to investigate the relationship between symmetry of gait parameters and COP-shift, and clinical measures. Methods: Female subjects (n = 16) had with unilateral radiological knee OA and pain. Healthy controls (n = 15) were age-matched to OA group. Symmetry of foot rotation, step length, stance and swing phase, lateral symmetry of COP and anterior/posterior symmetry of COP during walking was assessed. To assess the clinical variables, pain intensity, pain duration and function using Knee Osteoarthritis Outcome Survey (KOOS) subscales were collected. We compared symmetry between groups using Mann-Whitney U-test or independent t-test. Relationships between clinical measures and symmetry index measured using Spearman's correlation test. Statistical significance was set at α = 0.05. Results: Knee OA group showed significantly greater values of only lateral symmetry of COP (p < 0.01) than healthy group. Values of lateral symmetry of COP had moderate or strong correlation significantly with the intensity of knee pain, pain duration, and scores of all KOOS subscales (p < 0.01). Conclusion: Patients with unilateral knee OA and pain showed more asymmetry of lateral COP-shift during walking compared with matched healthy controls. In addition, larger asymmetry of lateral COP-shift has the moderate or strong association with worse of knee pain, worse in KOOS scores and longer duration of knee pain. Asymmetry of lateral COP-shift during walking may be one of the characteristics of unilateral knee OA as the compensatory strategy response to unilateral OA of the knee.