• Title/Summary/Keyword: Food waste

Search Result 1,229, Processing Time 0.034 seconds

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.

Conversion Characteristics of MSW at Various Pyrolytic and Oxidative Conditions (열분해 및 산화조건에서 MSW의 물질전환특성 연구)

  • Byen, Kyong-Hee;Lee, Yong-Jin;Yoon, Kyoon-Duk;Dong, Jong-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1955-1968
    • /
    • 2000
  • Thermal gravimetric change characteristics and gas phase product - CO, NO, $NO_2$, VOCs - generated in the process of pyrolysis and oxidation. were investigated with variation of process parameters including furnace reactor temperature both in pyrolytic and oxidative conditions. For the thermal gravimetric change characteristics. paper and wood were mainly decomposed at lower temperatures and they had similar thermal gravimetric change trend due to their similar compositions; plastics were mainly decomposed at higher temperatures; in the case of textile. natural compounds were decomposed at lower temperatures and synthetic compounds at relatively higher temperatures; food was decomposed in the wide range of temperatures possibly due to their different kinds of components. For the analysis results of gas phase product. the concentrations of NO, $NO_2$ were detected at higher level at the oxidative conditions than at the pyrolytic conditions except that of CO, which is due to complete combustion with sufficient oxygen at the oxidative condition; food gave off CO, NO, $NO_2$ more than the other wastes. VOCs were emitted more at the pyrolytic conditions than at the oxidative conditions.

  • PDF

Effect of Heat Treatment and Antibiotics on the Growth of Cellulomonas sp. KL-6 (Cellulomonas sp. KL-6의 증식에 미치는 열처리 및 항생물질의 효과)

  • Kwon, Oh-Jin;Chung, Yung-Gun
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.221-225
    • /
    • 1994
  • For producing single cell protein from the agricultural waste, heat treatment and antibiotics on the growth of Cellulomonas sp. KL-6, isolated in rotting leaf and the adjacent soil mixture, were examined. The organism was able to grow until 5 min. at $65^{\circ}C$, 1 min. at $75^{\circ}C$ and 1/4 min. at $85^{\circ}C$ in gradually rising temperatures. It can be Seen that preheating the suspension at $48^{\circ}C$ results in a marked decrease in heat resistance. On heating at temperature of $55^{\circ}C$ for 30 min., strain KL-6 was more resisted in the 0.1 M phosphate buffer when such substrates as casamino acid (1%), yeast extract (1%) or xylose (5%) were added to it whereas this organism was appeared weaker resistances in 0.1 M phosphate buffer when cysteine (0.03 M), sodium citrate (1%) or casein (1%) were in fused into it. Test strain was susceptible to penicillin-G $(1.563\;{\mu}g/ml)$ and ampicillin $(3.125\;{\mu}g/ml)$, but the organism was resisted to kanamycin $(>200\;{\mu}g/ml)$. The treatment of strain KL-6 with sodium dodecyl sulfate (SDS) resulted in the elimination of R-plasmid from the host strain and the elimination rate with SDS $(10{\sim}30\;{\mu}g/ml)$ was about $9.2{\sim}31.2%$, respectively.

  • PDF

Isolation and Characterization of An Alcohol Fermentation Strain from Anaerobic Acid Fermentor to Treat Food Wastes (음식폐기물 처리용 혐기성 산 발효조로부터 알코올발효 균주의 분리 및 특성)

  • Kim, Jung-Kon;Han, Gui-Hwan;Yoo, Jin-Cheol;Seong, Chi-Nam;Kim, Seong-Jun;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.451-455
    • /
    • 2006
  • An efficient pilot scale (10 ton) three-stage methane fermentation system to digest food waste has been developed in this laboratory. This system consisted of three stages: semianaerobic hydrolysis, anaerobic acidogenesis and strictly anaerobic methanogenesis. From the secondary acidogenesis reactor, a novel strain KA4 responsible for alcohol fermentation was isolated and characterized. The cell was oval and its dimension was $5.5-6.5{\times}3.5-4.5\;{\mu}m$. This strain was identified as Saccharomyces cerevisiae KA4 by 26S rDNA D1/D2 rDNA sequence. Optimal culture temperature was $30-35^{\circ}C$. Cells were tolerant to 5% (v/v) ethanol concentration, however, were inhibited significantly by higher ethanol concentration up to 7%. The strain could grow well up to 50% (w/v) initial glucose concentration in the YM liquid medium, however, optimal concentration for ethanol fermentation was 10%. It could produce ethanol in a broad initial pH range from 4 to 10, and optimal pH was 6. In this condition, the strain converted 10% glucose to 7.4% ethanol during 24 hr, and ethanol yield was estimated to be 2.87 moi EtOH/mol glucose.

Preparation of Ginseng Concentrate with High Content of Acidic Polysaccharide from White Tail Ginseng Marc (백삼 알코올 추출박을 이용한 산성다당체 다량 함유 백삼 농축액 제조)

  • 강태화;박경준;강성태
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.736-740
    • /
    • 2004
  • Preparation of ginseng concentrate with high content of acidic polysaccharide from white tail ginseng marc that was obtained after preparation of white tail ginseng extract. As a result of extraction of white tail ginseng under various concentrations of ethanol (0∼90%), both amount of acidic polysaccharide and extraction yield decreased by increasing the ethanol concentration. However, acidic polysaccharide extracted by water from white tail ginseng marc was increased in accordance with the increase of ethanol concentration. The optimal condition for the extraction of acidic polysaccharide from the marc was treatment of $\alpha$-amylase in 390∼650 unit/g residue/15 mL of distilled water for 5 min at 4$0^{\circ}C$. The amount of acidic polysaccharide in water extract of the marc was increased from 8.3% to 10.5% by the treatment of $\alpha$-amylase. A new ginseng extract mixture was manufactured by mixing 50% ethanol extract of white tail ginseng and water extract of alcoholic residue in the ratio of 8:2 (w/w). Crude saponin content and acidic polysaccharide content were 10.5% and 17%, respectively. The mixture had a same crude saponin content and twice acidic polysaccharide content comparing to 50% ethanol extract of white tail ginseng. It suggests that preparation of new ginseng concentrate with high content of acidic polysaccharide from white tail ginseng marc has high potencies in the utilization of waste material.

Utilization of Egg-shell for Bread-making (제빵시 난각의 이용에 관한 연구)

  • Kim, Joong-Man;Kim, Yong-Seob;Yang, Hee-Chon;Choi, Yong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 1989
  • This study was conducted to investigate whether egg-shell may be used as a mineral sourceor leavening agent in breadmaking. In Korea the waste volume of egg shell has been estimated at about 28,694 tons per year. Carbon dioxide generation maxima were established for barking powder$(153{\pm}3ml/g)$, egg-shell(205in reaction with lactic acid) and yeast$(115{\pm}3ml/sugar\;g)$. Gas release time required for each substance to reach $CO_2$ maximum was, for baking powder 7 minutes, for egg-shell 45 mins and for yeast 240 mins. Particle size of egg-shell in breadmaking was suitable more than 20 mesh (-). When egg-shell only was added to the basic formular without including lactic acid, no leavening effect was observed. However, when lactic acid and egg-shell were used together, the leavening effect was more or less equivalent to that of yeast(control). Addition of egg-shell was found to increase calcium content of bread products without noticeable altering flavor, as compared with control. Joint use of egg-shell was organic acids in breadmaking was shown to have potential in time saving, volume increase and yeast saving.

  • PDF

Changes in Rural Health and Environmental Factors (2001-2010) A Comparison between Agricultural and Nonagricultural Groups (농촌 환경ㆍ건강 지표의 변화 추이(2001~2010년) -농촌 거주 농업종사자와 비농업종사자의 비교-)

  • Rhie, Seung Gyo;Hwang, Jeong-Im;Won, Hyang Rye
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.1
    • /
    • pp.99-111
    • /
    • 2014
  • To verify welfare needs, rural health and environmental factors were compared between agricultural and nonagricultural groups over the past 10 years. Based on a survey of rural life by the Rural Development Administration, whose sample included agricultural (72.8%) and nonagricultural (27.2%) groups, all factors were analyzed using SAS ( 9.3). For rural home heating, the use of oil boilers (77.2%-78.0%) decreased (53.0%-53.7%) over the same period, whereas that of electric boilers increased (21.9% and 13.5% for agricultural and nonagricultural groups, respectively). The joint water- supply increased, and the use of flush toilets (52.4% to 84.5% in the agricultural group and 64.6% to 81.4% in the nonagricultural group) and hot-water bathing was higher in the agricultural group (79% to 92.6%) than in the nonagricultural group (72.2% to 87.6%) at the p<0.001 level. Incineration accounted for the largest portion of household waste until 2006, when it was replaced by other treatment methods such as the pay-per-treatment option (44.4% and 68.3% in the agricultural and nonagricultural groups, respectively) (p<0.001). Garbage disposal in 2001 was mainly burial or animal feed, but separate collection increased in 2010 (42.2% and 64.3% in the agricultural and nonagricultural groups, respectively) (p<0.001). The self-perception of health was lower in the agricultural group than in the nonagricultural group (2.96 to 2.74 on a five-point scale in the agricultural group and 3.07 to 2.98 in the nonagricultural group). Drinking decreased less in the agricultural group (criteria: one point once a week,; 1.48 to 1.20) than in the nonagricultural group (1.13 to 0.80) at p<0.001, and a similar pattern was found for smoking (p<0.001). Health screening decreased in the last 10 years (scoring based one point/1-2 times per year,: 0.94 to 0.64 in the agricultural group and 1.08 to 0.69 in the nonagricultural group;p<0.01). These results indicate that various health and environmental factors were less favorable to farmers except for bathing in comparison to nonagricultural living in the same area. This suggests that people in agriculture are less likely to live and work in favorable environments than those outside the sector and thus indicates a need for more attention to the national health welfare system for farmers for systematic realization.

Production of Lactulose by Biological Methods and Its Application (생물학적 방법을 통한 기능성 이당 lactulose의 생산과 응용 연구)

  • Kim, Yeong-Su;Kim, Do-Yeon;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1477-1486
    • /
    • 2016
  • Lactulose (4-O-${\beta}$-D-galactopyranosyl-D-fructose) is a non-digestible synthetic ketose disaccharide which can used in food and pharmaceutical fields due to its useful functions for encephalopathy, chronic constipation, hyperammonemia, etc. Therefore, the lactulose is regarded as one of the most important disaccharides and have been concentrated much interesting as an attractive functional material in the current industry. From this reason, the research related on the production of lactulose has been carried out various academic and industrial research groups. To produce lactulose, two main methods, chemical production and enzymatic production have been used. Commercially lactulose produced by alkaline isomerization of lactose as chemical production method but it has many disadvantages such as rapid lactulose degradation, purification, and waste management. From these reasons, lactulose produced by enzymatic method which solves these problems has been suggested as a proper method for lactulose production. Two different enzymatic methods have been reported as methods for lactulose production. Lactulose can be obtained through hydrolysis and transfer reaction catalyzed by a ${\beta}$-galactosidase which requires fructose as co-substrate and exhibits a low conversion. Alternatively, lactulose can be produced by direct isomerization of lactose to lactulose catalyzed by cellobiose 2-epimerase which requires lactose as a single substrate and achieves a high lactulose yield. This review summarizes the current state of lactulose production by chemical and biological methods.

Property Changes of the Salt-Seasoned and Fermented the Broken Roes of Alaska Pollock Stuffed into Cellulose Casing (Cellulose casing에 충진한 명태 절란젓의 숙성중 품질변화)

  • Park, Jong-Hyuk;Kim, Sang-Moo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.220-224
    • /
    • 2002
  • Alaska pollock roe is mainly used for the production of salt-seasoned and fermented seafood (Myungran-jeot). Alaska pollock roes with broken egg membrane are usually discarded as a waste product. In this study, the broken roes of Alaska pollock were salt-seasoned and stuffed into cellulose casing for commercial production. The chemical and microbial changes of the broken roes of Alaska pollock stuffed into cellulose casing fermented at 5 and $25^{\circ}C$, respectively, were analyzed at different ripening periods. On 5 week fermentation, pH decreased down to 5.60 and 5.10 at 5 and $25^{\circ}C$, respectively, but the amounts of lactic acid, amino-nitrogen, and volatile basic nitrogen increased continously as ripening period increased, higher at 25 than $5^{\circ}C$. The amounts of amino-nitrogen, 620 and 780 mg/100 g, were the highest on 3 week fermentation at $5^{\circ}C$ and on 1 week at $25^{\circ}C$, respectively. The numbers of total viable cell and lactic acid bacteria, $3.1{\times}10^6$ and $3.1{\times}10^5\;CFU/g$ at $5^{\circ}C$, and $1.9{\times}10^7$ and $2.8{\times}10^6\;CFU/g$ at $25^{\circ}C$, respectively, were the highest on 2 week fermentation.

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME (요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Choi, In-Hu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.