• Title/Summary/Keyword: Food fermentation

Search Result 4,156, Processing Time 0.03 seconds

Metabolite Profiling during Fermentation of Makgeolli by the Wild Yeast Strain Saccharomyces cerevisiae Y98-5

  • Kim, Hye Ryun;Kim, Jae-Ho;Ahn, Byung Hak;Bai, Dong-Hoon
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.353-360
    • /
    • 2014
  • Makgeolli is a traditional Korean alcoholic beverage. The flavor of makgeolli is primarily determined by metabolic products such as free sugars, amino acids, organic acids, and aromatic compounds, which are produced during the fermentation of raw materials by molds and yeasts present in nuruk, a Korean fermentation starter. In this study, makgeolli was brewed using the wild yeast strain Saccharomyces cerevisiae Y98-5, and temporal changes in the metabolites during fermentation were analyzed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. The resultant data were analyzed by partial least squares-discriminant analysis (PLS-DA). Various metabolites, including amino acids, organic acids, sugar alcohols, small peptides, and nucleosides, were obviously altered by increasing the fermentation period. Changes in these metabolites allowed us to distinguish among makgeolli samples with different fermentation periods (1, 2, 3, 6, 7, and 8 days) on a PLS-DA score plot. In the makgeolli brewed in this study, the amounts of tyrosine ($463.13{\mu}g/mL$) and leucine ($362.77{\mu}g/mL$) were high. Therefore, our results indicate that monitoring the changes in metabolites during makgeolli fermentation might be important for brewing makgeolli with good nutritional quality.

Effects of Processing Conditions on Some Characteristics of Dongchimi Juice

  • Kim, Dong-Hee;Chum, Yun-Kee;Kim, Woo-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.46-52
    • /
    • 1996
  • Effective method for the preparation of Dongchimi juice was developed by addition of NaCi, sucrose and bydrolytic enzymes before fermentation and addition on Dongchimi juice during fermentation. The radish was ground and suspended in water(1:1, w/v) with addition of spices(garlic, green onion and ginger) followed by fermentation at $25^{\circ}C$. The addition of 2% NaCi and 0.5~2.0% sucrose resulted in significant increase of solid content and it was also improved by the addition of polysaccharide hydrolyzing enzyme during fermentation. When the fermented juices of pH 5.4 of 4.4 were added by 15% of total weight before(pH 5.4 juice)and during (pH 4.4 juice) fermentation, a significant increase in solid content after 24hrs of fermentation was resulted. The combined method of addition of 2% NaCI, 1.0% sucrode, 0.1% Viscozyme and 10% of fermented juice of pH 5.4 and 4.$ before and during fermentation improved solid content, reducing sugar, color and showed little effect on viscosity. The organoleptic characteristics were also improved by the combined method.

  • PDF

Determination of Quality Index Components in High-Acidity Cider Vinegar Produced by Two-Stage Fermentation (2단계 발효로 제조된 고산도 사과식초의 품질지표성분 설정)

  • Jo, Yunhee;Park, Yunji;Lee, Hyun-Gyu;Lee, Hye-Jin;Jeong, Yong-Jin;Yeo, Soo-Hwan;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.431-437
    • /
    • 2015
  • In this study, high-acidity cider vinegar (HACV) was produced by alcoholic and acetic acid fermentation of apple concentrate without any nutrients and then the optimum alcohol concentration was determined through a qualitative study. HACV was fermented with different initial alcohol concentrations (6-9%) during the process of acetic acid fermentation. The highest content of reducing sugar, organic acids, and free amino acids was observed at 6% of initial alcohol concentration. Approximately 20 types of volatile compounds were identified by solid-phase microextraction (SPME) and GC-MS. The total volatile content was the highest at 6% of initial alcohol concentration, and the acid content was the lowest at 9% of the initial alcohol concentration. The HACV produced by a two-stage fermentation process was qualitatively better than commercial HACV presenting the highest value at 6% of initial alcohol concentration. Malic acid, aspartic acid, and hexyl acetate were selected as quality index components of HACV production by two-stage fermentation on the basis of correlation between their physicochemical properties and the sensory attributes of HACV.

Solid-State Fermentation for Production of Monacolin K on Soybean by Monascus ruber GM011

  • Jia, Xiao-Qin;Mo, Eun-Kyoung;Sun, Bai-Shen;Gu, Li-Juan;Fang, Zhe-Ming;Sung, Chang-Keun
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.814-816
    • /
    • 2006
  • Monacolin K (MK) was produced on soybean using Monascus ruber GM011 by a two-stage-fermentation process. The optimal temperature was identified as $28^{\circ}C$. Higher yield was obtained by multiple-level-temperature cultivation than by single-level-temperature cultivation. The highest yield of total MK, 4.810 mg/g dry soybean product, was attained after 30 days of solid-state fermentation. No citrinin could be detected in the fermented soybean.

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Optimization for the Fermentation Condition of Persimmon Vinegar using Response Surface Methodology (반응표면분석에 의한 감식초 제조조건의 최적화)

  • Jeong, Yong-Jin;Lee, Gee-Dong;Kim, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1203-1208
    • /
    • 1998
  • To utilize astringent persimmon (Diospyros kaki, T.) effectively, response surface methodology (RSM) was applied to optimize and monitor the vinegar fermentation conditions by two stage fermentation. In the first stage, the fermentation conditions for maximum alcohol content was $20.51\;^{\circ}brix$ in sugar concentration of astringent persimmon, 139.52 rpm in agitation rate, and 94.88 hr in fermentation time. When sugar concentration of astringent persimmon was $14\;^{\circ}brix$, maximum alcohol content predicted by response surface methodology was 7.1% at agitation rate of 40 rpm and fermentation time of 120 hr. In the second stage, the fermentation conditions for maximum acidity was 224.40 rpm in agitation rate, 176.07 hr in fermentation time. Alcohol content and acidity predicted at the optimum conditions were similar to experimental values.

  • PDF

Lactic Acid Fermentation of Rice and Quality Improvement by Amylolytic Enzyme Treatment during Fermentation (쌀의 젖산발효 및 발효중 전분가수분해효소 처리에 의한 품질 향상)

  • Mok, Chul-Kyoon;Han, Jin-Suk;Kim, Young-Jin;Kim, Nam-Soo;Kwon, Dae-Young;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.739-744
    • /
    • 1991
  • A palatable paste-type lactic fermented rice (LFR) was prepared by lactic acid fermentation after liquefaction and saccharification of cooked rice. A mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus (1 : 1) produced the LFR of the best quality. A great improvement in quality of the LFR was achieved by 0.02% each ${\alpha}-amylase$ and glucoamylase treatment during the fermentation (simultaneous saccharification and fermentation), which resulted from the increased sourness and sweetness and the decreased size of solid particles contained in the LFR. The resulted LFR was superior in quality. Physical and chemical properties of the LFR were evaluated.

  • PDF

Fermentation Characteristics and Sensory Characteristics of Makgeolli with Dried Citron (Citrus junos SIEB ex TANAKA) Peel (건조유자과피를 첨가하여 제조한 막걸리의 발효기간 중 이화학적 특성 및 제조된 막걸리의 관능적 특성)

  • Yang, Hee-Sun;Hwang, Su-Jung;Lee, Sung-Hee;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • This study was performed to examine the physicochemical characteristics and sensory properties of makgeolli with dried citron peel and levels (3, 6, and 9%) of citron (Citrus junos) in makgeolli during fermentation with two-step-brewing. The pH of makgeolli with citron dried peel increased within 5 days of fermentation, and decreased until 11 days of fermentation. Total acidity increased after 3 days of fermentation then decreased after 5 days of fermentation, but continued to increase slightly up to 12 days. Changes in alcohol content and amino acidity increased during fermentation. A sensoryevaluation of appearance, flavor, sourness, sweetness, bitterness, and overall acceptance of makgeolli with citron dried peel showed lower values than those of the control.

Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste (음식폐기물을 이용한 혐기성 수소 발효 시 초기 운전 성능에 대한 열처리 효과)

  • Lee, Chae-Young;Lee, Se-Wook;Hwang, Sun-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.765-771
    • /
    • 2011
  • This study was conducted to investigate the effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste. The result showed that hydrogen production was $0.61{\pm}0.31$ mol $H_2$/mol hexose with heat-treatment of food waste at $70^{\circ}C$ for 60 min whereas it was $0.36{\pm}0.31$ mol $H_2$/mol hexose without heat-treatment of one. The heat treatment of food waste enhanced hydrogen yield due probably to the increase of hydrolysis as well as the decrease of non-hydrogen fermentation microorganisms. The removal efficiency of carbohydrate in reactors regardless of heat treatment of food waste maintained over 90%. The hydrogen conversion efficiency from food waste was 1.7-6.3% with heat-treatment whereas it was 0.7-4.5% without heat-treatment. At the time of switchover from batch to continuous operation, lactate concentration was high compared to the n-butyrate concentration in anaerobic hydrogen fermentation reactor without heat-treatment. Anaerobic hydrogen fermentation of food waste with heat treatment was stable in start-up periods because lactate concentration could be maintained at a relatively low compared to n-butyrate concentration due to the decrease of non-hydrogen fermentation microorganisms.

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.