• Title/Summary/Keyword: Food Waste Compost

Search Result 124, Processing Time 0.023 seconds

Nitrogen and Phosphorus Loss with Runoff and Leachate from Soils Applied with Different Agricultural By-product Composts (부산물 퇴비를 시용한 토양에서 표면유거와 용탈에 의한 질소와 인의 유실)

  • Park, Chol-Soo;Joo, Jin-Ho;Lee, Won-Jung;Yoo, Kyung-Yoal;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.307-312
    • /
    • 2005
  • Since alpine upland in Pyungchang-gun has been typically applied every two or three years with saprolite, agricultural by-products are inputted to raise soil properties. Therefore, the effect of saprolite application on water quality in runoff and leachate should be monitored. To investigate water quality in runoff and leachate with various treatments of agricultural by-product, lysimeter with dimension of $0.85m{\times}1.75m{\times}0.30m$ was installed in Kangwon National University. Control, mixed compost with cow, chicken and sawdust by-product (CCSC), chicken manure by-product compost (CC), food waste by-product compost (FWC), and beer sewage sludge by-product compost (BSSC) at the rate of $10Mg\;ha^{-1}$ were mixed with soil in 25 cm depth, and water qualities in runoff and leachate were monitored from Jun. 4, 2004 to Oct. 18, 2004. EC ($0.8-2.2dS\;m^{-1}$) and concentrations of total N ($25-75mg\;L^{-1}$) and total P ($0.12-0.43mg\;L^{-1}$) were highest in both runoff and leachate of CC treatment. EC values in CC and FWC treatments continuously increased during lysimeter experiment, while total N and total P concentrations continuously decreased. Average total N concentrations in runoff taken from CCSC, FWC and BSSC treatments were 41, 34 and $37mg\;L^{-1}$, and in leachate were 35, 28 and $34mg\;L^{-1}$, respectively. Average total P concentrations were not different with different treatments. EC values in leachate were higher than those in runoff, and total N concentrations in runoff were higher than those in leachate.

Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil (온도가 유기물의 질소무기화와 미생물 군집구조에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Kim, Seong-Cheol;Moon, Doo-Gyung;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community in non-volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles showed that was different significantly according to incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. Principal component analysis using PLFA profiles showed that microbial community structures were composed differently by temperature factor at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$). In conclusion, Soil microbial community structure showed relative sensitivity and seasonal changes as affected by temperature and organic matter type.

Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil (온도가 화산회토양의 질소무기화와 미생물군집이동에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Koh, Sang-Wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.467-474
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community structure in volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles were different significantly caused by incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. But cy19:0/$18:1{\omega}7c$ ratio increased both FWC and PMC treatment. Principal component analysis using PLFA profiles showed that microbial community structure made up clearly at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$) by temperature factor. As incubating time passed, microbial community structure shifted gradually.

Influence of the Mixtured Application of Food Waste Compost and Pig Manure Compost on Hot Pepper(Capsicum annuum L.) Yield and Growth (음식물 퇴비와 돈분퇴비의 혼합 시용에 따른 고추의 생육과 수량에 미치는 영향)

  • Lee, Byung-Seok;Chang, Ki-Woon;Hong, Sung-Gil;Lee, Jong-Eun;Kwon, Hyuk-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.130-130
    • /
    • 2003
  • 본 연구는 음식물찌꺼기의 재활용 방법의 일환으로 음식물 퇴비와 돈분 퇴비를 혼합, 고추 작물에 적용하여 생육 및 품질면에서 합리적인 시용량을 검증하고 토양 이화학적 특성변화 및 고추 생육과 수량에 미치는 영향을 평가하기 위해 실시하였다. 퇴비의 처리는 관행구(2ton/10a의 돈분 퇴비)와 음식물 퇴비 및 돈분 퇴비의 혼합구인 0.5t:1.5t, 1.0t:1.0t, 1.5t:0.5t, 2.0t:0ton/10a의 4개 처리구등 총 5개 처리구를 난괴법 3반복으로 수행하였다. 돈분 퇴비와 음식물 퇴비의 이화학적 특성을 분석한 결과 음식물 퇴비는 유기물이 기준량에 2배정도 높았으며, NaCl은 공정규격인 1%를 약 2.5배정도 초과하였다. 음식물 퇴비의 시용량 증가에 따라 토양 pH는 처리구별 특별한 변화는 없었으며, EC는 전체적으로 증가하였다. 생육기간 중 대조구와 음식물 퇴비의 처리구간 생육차이가 약간 나타났으며, 그로 인해 고추의 수량에 영향을 미친 것으로 판단된다. 음식물 퇴비 처리구에서 1ton/10a이상 일 때 시용량이 증가할수록 수확량 및 고추 개수에 있어서 감소 경향을 보였지만 수량 차이는 크지 않았다. 또한 capsaicin 함량에서도 음식물 퇴비 처리구간에 큰 차이는 보이지 않았다. 음식물 퇴비의 시용량에 따라 고추에 흡수되는 양분 흡수량은 큰 차이를 보이지 않았다. 결론적으로 음식물 퇴비를 시용한 고추 재배 시험에서 토양의 유기물 함량 증가, 물리성 개량, 토양 pH 완충력 증대 등의 효과를 보였다. 그러나 음식물 퇴비를 50%이상 돈분 퇴비와 혼합 시용시 고추의 수량이나 품질의 저하 및 토양의 염류집적의 우려가 나타났으나, 50%이하로 혼합 시용시 큰 무리는 없었다. 현재 적정 혼합비율을 구명하기 위한 연구가 진행중이다.

  • PDF

Effect of Consecutive Application of Organic Matter on Soil Chemical Properties and Enzyme Activity in Potato Cultivation Soil (유기물 연용이 감자재배 비화산회토양의 화학성과 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Seo, Hyeong-Ho;Choi, Kyung-San;Kim, Seong-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.801-807
    • /
    • 2011
  • This study was carried out to evaluate effect of consecutive application of organic matter on soil chemical properties and dehydrogenase, acid phosphatase activity in non-volcanic ash soil during three cropping season. Organic matter mixture and organic fertilizer (MOF, $2,000kg\;10a^{-1}$), food waste compost (FWC, $2,000kg\;10a^{-1}$), and pig manure compost (PMC, 2,000, 4,000, and $6,000kg\;10a^{-1}$) were applied for each cropping season. Soil pH values were increased after three cropping season in all treatment. In the soils of the increased application of PMC, soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), and heavy metal (Zn and Cu) contents were increased. In addition, Soil dehydrogenase activity was significantly increased in proportions to PMC application rate and cropping season during potato cultivation period. The activity was two times higher in PMC ($4,000kg\;10a^{-1}$) than control after the third cropping season. Soil dehydrogenase activity was in order of PMC>FWC>NPK+PMC>MOF. Acid phosphatase activity was higher in PMC ($6,000kg\;10a^{-1}$) than other treatment. Soil Zn content and dehydrogenase activity showed linearly correlation, which were MOF ($R^2$=0.427), FWC ($R^2$=0.427) and PMC ($R^2$=0.411, p<0.01), respectively. This study demonstrated that soil chemical properties and enzyme activity could be affected greatly by consecutive application of different organic matter in the potato cultivation field.

Effect of Biodegradable Waste Particle Size on Aerobic Stabilization Reactions in MBT System (생분해성 폐기물 입경이 MBT시스템과 연계된 호기성안정화반응에 미치는 영향)

  • Kwon, Sang-Hagk;Ban, Jong-Sub;Kim, Su-Jin;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.523-529
    • /
    • 2011
  • This study has been performed to examine the influence of the size of particles on the stabilization in the aerobic stabilization equipment connected with MBT system. The biodegradable waste inside the reactor (60% of food waste, 25% of paper waste, 2% of wood waste and 5% of compost) has been charged in same composition. The degree of stabilization was compared and analyzed after charging with adjustment of particle size in 5 mm, 10 mm, 20 mm, 50 mm, 100 mm and state of no separation. The experiment revealed that highest temperature beyond $65^{\circ}C$ was shown in the particle size of less than 50 mm in change of temperature and the highest temperature was about $50^{\circ}C$ in reactor of 100 mm and no separation. The proportionality between generated quantity of $CO_2$ and particle size was not observed, even the highest in generated quantity was shown in over 100 mm. The weight changes based on wet and dry conditions in the reaction process showed the 30% and 46% of reduction in the smallest particle size of 5 mm and it showed the trend of the lower reduction rate at the bigger particle size. The water soluble $COD_{Cr}$ and TOC showed the reduction rate of 60% in reactor of particle size in 100 mm and no separation while the reduction rate comparing to the initial stage of reaction in the reactor of less than 50 mm was 80%. Such result derived the conclusion of acceleration in the decomposing stabilization of biodegradable material due to the decomposing rate of organic substance as the particle size of biodegradable waste gets smaller. It is concluded as necessary to react in adjustment under 50 mm of particle size as much as possible.

Influence of Continuous Application with Food Waste Compost on Hot Pepper(Capsicum annuum L.) Yield and Growth (음식물 퇴비의 연용 시용에 따른 고추의 생육과 수량에 미치는 영향)

  • Jeon, Han-Ki;Chang, Ki-Woon;Hong, Sung-Gil;Yu, Young-Seok;Kwon, Hyuk-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.129-129
    • /
    • 2003
  • 본 연구는 음식물 퇴비의 합리적인 시용량을 검증하고, 3년 연용에 의한 토양 변화 및 고추 생육과 수량에 미치는 영향을 평가하고 돈분퇴비를 시용한 대조구와 생육 및 품질 면에서 비교 분석하여 적정한 퇴비 시용량을 설정하기 위하여 실시하였다. 처리구는 1, 2, 3차 연도 모두 동일한 방법으로 무처리구, 대조구(2ton/10a의 돈분퇴비), 음식물 퇴비 2t, 4t, 6t, 8ton/10a을 사용한 처리구 등 6개를 두었으며 3반복, 난괴법을 이용하였다. 음식물 퇴비와 돈분 퇴비의 이화학적 특성을 분석한 결과, 음식물 퇴비의 경우 1차 연도는 유기물과 NaCl 모두 부산물 비료의 공정규격에 적합하였으나, 2차 연도는 유기물이, 3차 연도는 NaCl이 공정규격에 적합하지 않았다. 그리고 돈분 퇴비의 경우 수분함량이 약간의 차이를 보였으나 공정규격을 벗어나지는 않았다. 토양은 음식물 퇴비 시용량이 증가할수록 대부분의 화학적 특성이 증가하였고, 연용에 의해서도 유기물, 치환성양이온, NaCl 등의 양이 증가함을 보여 염류집적이 일어나고 있음을 확인할 수 있었다. 또, 음식물 퇴비 시용량증가에 따라 비중은 낮아지고 공극률이 증가하여 물리성 개선에 도움을 주었으나, 1, 2, 3차 연도를 비교해 보았을 때 큰 차이는 없었다. 고추의 생육과 수량에 있어서도 음식물 퇴비 시용량이 증가할수록 초기 생육이 저조하였으며, 그로 인해 수량이 감소하였다. 또한 3년 연용으로 인한 음식물 퇴비의 축적으로 수량의 감소와 품질 저하를 초래하였다. 음식물 퇴비의 연용에서 2ton/10a 이상의 시용은 수량의 감소를 초래하였다. 이러한 결과로 볼 때 음식물 퇴비를 2ton/10a 이하로 사용하면 큰 무리는 없겠지만 장기 연용은 삼가는 것이 좋을 것이라 판단된다. 따라서 음식물 퇴비를 다른 일반 퇴비 제조의 중간 원료나, 또는 혼합 사용하는 시험을 계속 진행 중에 있다.

  • PDF

Evaluation of field application of biocover and biofilter to reduce landfill methane and odor emissions (매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구)

  • Chae, Jeong-Seok;Jeon, Jun-Min;Oh, Kyeong-Cheol;Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Shin-Do
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.139-149
    • /
    • 2017
  • In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover-1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.

Importance-Performance Analysis of the Livestock Organic Wastes Recycling Policy (축산 유기성 폐기물 자원화 정책의 중요도-만족도 분석)

  • Kim, Won-Tae;Suh, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.523-531
    • /
    • 2018
  • The purpose of this paper is to derive priorities and implications for the organic resource conservation policy in the livestock sector. We conducted a survey on the importance-performance of the organic waste resource reclamation of livestock sector using a 5-point Likert scale. The importance average for the resource recycling of livestock organic waste was 3.63 and the average of performance was 3.04. As a result of the IPA on livestock manure recycling measures, it is necessary to improve feed quality, establish a local recycling system, increase demand for compost and liquid, enhance customer linkages, and develop cost reduction technologies. It requires intensive support for promoting the spread of odor reduction technologies and integrated management of biomass. It is necessary to introduce mid- and long-term measures such as the revival of feed in tariff, promote by-product feeding, establish solid fuel process management standards, create hygiene safety standards, develop eco-beads and promotion of feed conversion. It is required to strengthen support for the development of odor reduction technologies and prepare consultative organizations among related departments, develop eco-friendly solid fuel technology, and support policies for renewable energy certification.

Economic Feasibility of Hill Land Development (산지개발(山地開發)의 경제성)

  • Kim, Dong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.283-295
    • /
    • 1979
  • A new Farmland Expansion and Development Promotion Law was enacted in 1975. This law authorizes the Government to undertake development within a declared "reclamation area", wherever the land owners are unable to do so. In order to give additional impetus to conversion of waste hilly land into productive farmland, these hilly land development projects were conducted as large scale scheme which include soil fertility improvements such as the application of lime and phosphate. Farmland Expansion and Development Promotion Corps has attempted to undertake annual farm surveys in order to obtain some information about hilly land agriculture and farming operations within the reclamation project areas since 1976. As survey data accumulates, more and more clear picture of hilly land farming come to appear and enable us to conduct in-depth study. Effects of such upland reclamation include converting of previously unproductive slopeland into cultivable farmland for lucrative and commercial farming or food production. Furthermore, idle or marginal resources such as farm labor, equipment and compost would be fully employed. Socio-economic effects would include increases in land value and attitude change of farmers. On the other hand the preservation of natural environments might be damaged to the some extend by the projects. As shown in Table 7, the average farm size increased from 3,156 pyeong($3.3m^2$) to 5,562 pyeong, a 76.2% increase. The proportion of small farms with less than I ha dropped from 59.8% to 34.4%, but that of the large farms over 2 ha rose from 13.1% to 32.0% (See Table 8). The survey results indicate that as the farming on reclaimed uplands become time-honored, the acreage devoted for food crop production decreases against the economic crop growing acreage (see Table 6). For example, in the case of uplands reclaimed in 1972, the ratio of food crop acreages decreased from 99.7% in 1972 to 62.5% in 1977, whereas that of economic crop acreages increased from 0.3% in 1972 to 37.5% in 1977. The government used to actively encourage the farmers to carry out food crop production in the reclaimed upland targting toward the realization of self-sufficiency in food grains. It is, however, apparent that the farmers did hardly take the government advises as far as their economic interest were concerned. Yield per 10a. of various crops from the reclaimed uplands by year were surveyed as seen in Table 12. On the average, barley production in the reclaimed areas achieved 83.3% of the average unit yield from the existing upland in its 5 th year. Soybean yields showed a modest increase from 64% in the first year to 95%, in the 5 th year. In contrast, economic crops such as red pepper, totacco and radish achieved their maximum target yields in 3 years from starting to cultivate on the reclaimed farms. In order to test the post economic viability, an economic analysis was performed for each of selected subprojects on the basis of the data obtained through survey. The average actual internal economic rate of return on upland reclamation investments was found to be 20.3% which exceeded other types of projects of land and water development such as tidal land reclamation, irrigation or paddy rearrangement. The actual IRRs of subcategories of upland reclamation projects varied from 17.9% to 21.4% depending upon the kinds of cropping system adopted in each reclaimed areas such as food, economic, fruit or forage crops.

  • PDF