• Title/Summary/Keyword: Food Freshness Monitoring

Search Result 9, Processing Time 0.025 seconds

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang;Lam, Minh Binh;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.293-302
    • /
    • 2020
  • Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

Monitoring of Used Frying Oils and Frying Times for Frying Chicken Nuggets Using Peroxide Value and Acid Value

  • Park, Jung-Min;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.612-616
    • /
    • 2016
  • This study was conducted to investigate the condition of frying oil used for frying chicken nuggets in a deep fryer. The acidification of the frying oils used, soybean oil (SB), canola oil (CA), palm oil (PA), and lard (LA), were determined as peroxide value, acid value, and fatty acid composition, after chicken nuggets were fried in them for 101 times. The acid value and peroxide value obtained were 5.14 mg KOH/g and 66.03 meq/kg in SB, 4.47 mg KOH/g and 71.04 meq/kg in CA, 2.66 mg KOH/g and 15.48 meq/kg in PA, and 5.37 mg KOH/g and 62.92 meq/kg in LA, respectively. The ranges of the major fatty acid contents were palmitic acid, 8.91-45.84%; oleic acid, 34.74-58.68%; linoleic acid, 10.32-18.65%; and stearic acid, 2.28-10.86%.Used frying oils for food except animal products have a legal limit for the freshness standard, set by the Food Codex regulations (AV<2.5, POV<50). Therefore, this study could help develop a freshness standard for frying oils used for animal products such as chicken nuggets. Based on the quality limits associated with food regulations stated, we suggested that the estimated frying times before acceptable freshness was exceeded were 41 for SB, 38 for LA, 53 for CA, and 109 for PA. This data may be useful in determining food quality regulations for frying oil used for animal products.

A fully UHF-powered smart sensor tag in food freshness monitoring (음식물 신선도 모니터링을 위한 풀 패시브 UHF 스마트 센서 태그)

  • Lam, Binh Minh;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.89-96
    • /
    • 2018
  • This study aims to develop a fully passive smart sensing tag utilizing RF (Radio Frequency) energy harvesting technology at UHF (Ultra High Frequency) band of 915MHz. To optimize the power collected under various radiated conditions, an efficient energy harvesting module exploiting a boost circuit with maximum power point tracking (MPPT) is employed. Specifically, the proposed tag features two orthogonal antennas to enhance its capability of both energy scavenging and data transmissions. The experimental result shows that the developed smart sensor tag can scavenge an RF input power of as low as 0.19mW at a distance of 4 meters for a 3.6Vdc output. Furthermore, the proposed smart sensor tag performs the feasibility of completely autonomous monitoring food freshness at 2 meters with a low-power sensor array.

Development of a Food Freshness Indicator for Monitoring Spoilage of Chicken Breast Using a Porous Substrate (다공성 기재를 이용한 닭가슴살 신선도 인디케이터 제조 및 특성)

  • Lee, Kaeun;Baek, Seunghye;Kim, Dowan;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2017
  • To visually identify the spoilage of chicken breasts, a three layered freshness indicator consisting of PET/bromocresol green (BCG)-ethylene vinyl acetate (EVA)-acetic acid (AA) composite layer/porous substrates was successfully prepared and their performance were simulated at 20% of $CO_2$ and 4 different trimethylamine (TMA) concentrations to evaluate color change at minimal spoilage level. The visibility and range of color changes of the as-prepared indicators responding to TMA concentration as a simulant were strongly dependent on the concentrations of BCG and AA. As the BCG content increased, the visibility of color change in the freshness indicators was apparently improved and the range of color change could be controlled by contents of AA. Among the as-prepared freshness indicators, 'G0.12_A0.5' which consisting 0.12g of BCG and 0.5g of AA was selected as an optimum composition due to the highest visibility at TMA 20 mg% corresponding to the minimal spoilage level. The color of the indicator changed from yellow to green for spoilage indication of chicken breast, which could be easily seen with the naked eyes and well consistent with the simulation results. It is expected that our developed freshness indicator can be useful in monitoring various food freshness and quality.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • v.5 no.3
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

Development of Calibration Model for Firmness Evaluation of Apple Fruit using Near-infrared Reflectance Spectroscopy (사과 경도의 비파괴측정을 위한 검량식 개발 및 정확도 향상을 위한 연구)

  • 손미령;조래광
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Using Fuji apple fruits cultivated in Kyungpook prefecture, the calibration model for firmness evaluation of fruits by near infrared(NIR) reflectance spectroscopy was developed, and the various influence factors such as instrument variety, measuring method, sample group, apple peel and selection of firmness point were investigated. Spectra of sample were recorded in wavelength range of 1100∼2500nm using NIR spectrometer (InfraAlyzer 500), and data were analyzed by stepwise multiple linear regression of IDAS program. The accuracy of calibration model was the highest when using sample group with wide range, and the firmness mean values obtained in graph by texture analyser(TA) were used as standard data. Chemometrics models were developed using a calibration set of 324 samples and an independent validation set of 216 samples to evaluate the predictive ability of the models. The correlation coefficients and standard error of prediction were 0.84 and 0.094kg, respectively. Using developed calibration model, it was possible to monitor the firmness change of fruits during storage frequently. Time, which was reached to firmness high value in graph by TA, is possible to use as new parameter for freshness of fruit surface during storage.

  • PDF

Monitoring of Chilled Fish Quality by Using Time-Temperature Integrator (TTI): Application at a Mock Store (시간-온도이력 지시계(TTI)에 의한 냉장 생선의 품질 모니터링: 모의상점에 적용)

  • Park, Soo Yeon;Kang, Jin Won;Choi, Jung Hwa;Kim, Min Jung;Lee, Man Hi;Jung, Seung Won;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.3
    • /
    • pp.91-96
    • /
    • 2014
  • TTI was applied to monitor the quality changes of fish displayed at a mock store. Chilled fishes were displayed with TTI on a styrofoam box filled with crushed ice. The ice was periodically refilled to maintain the fish freshness. The color of TTI and the qualities of mackerel and Alaska pollack were measured during displaying. VBN and Pseudomonas spp. were used as the quality factors of mackerel and Pollack, respectively. The spoilage time was regarded as when the factors reached their critical levels. The fishes were spoiled when the color of TTI reached an end-point. It was therefore found out that it is possible to predict the fish spoilage by observing the TTI color change.

  • PDF

The Development of XML Message for Status Tracking the Importing Agrifoods During Transport by UBL (UBL 기반 수입농수산물 운송 중 상태 모니터링을 위한 XML 메시지 개발)

  • Ahn, Kyeong Rim;Ryu, Heeyoung;Lee, Hochoon;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.159-171
    • /
    • 2018
  • The imported foods, which are imported and sold domestically, are on the rise every year, and the scale is expected to be larger, including processing the imported raw materials. However, the origin of raw materials is indicated when declaring cargo for finished products of agricultural products, but the standardization of inspection information management system for raw materials is insufficient. In addition, there is a growing concern about the presence of residual pesticides or radioactivity in raw materials or products, and customer want to know production history information when purchasing agrifoods. It manages the hazard analysis of imported agricultural products, but most of them are global issues such as microorganisms, residual pesticides, food additives, and allergy components, etc. Therefore, it is necessary to share among the logistics entities in the entire transportation process the related data. Additionally, to do this, it needs to design an architecture and standardize business model. In this paper, it defines the architecture and the work-flow that occurs between the business process for collecting, processing, and processing information for tracking the status of imported agricultural products by steps, and develops XML message with UBL and the extracted conceptual information model. It will be easy to exchange and share information among the logistics entities through the defined standard model and it will be possible to establish visibility, reliability, safety, and freshness system for transportation of agricultural products requiring real-time management.