DOI QR코드

DOI QR Code

Development of a Food Freshness Indicator for Monitoring Spoilage of Chicken Breast Using a Porous Substrate

다공성 기재를 이용한 닭가슴살 신선도 인디케이터 제조 및 특성

  • 이가은 (연세대학교 과학기술대학 패키징학과) ;
  • 백승혜 (연세대학교 과학기술대학 패키징학과) ;
  • 김도완 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과)
  • Received : 2017.02.07
  • Accepted : 2017.04.14
  • Published : 2017.04.30

Abstract

To visually identify the spoilage of chicken breasts, a three layered freshness indicator consisting of PET/bromocresol green (BCG)-ethylene vinyl acetate (EVA)-acetic acid (AA) composite layer/porous substrates was successfully prepared and their performance were simulated at 20% of $CO_2$ and 4 different trimethylamine (TMA) concentrations to evaluate color change at minimal spoilage level. The visibility and range of color changes of the as-prepared indicators responding to TMA concentration as a simulant were strongly dependent on the concentrations of BCG and AA. As the BCG content increased, the visibility of color change in the freshness indicators was apparently improved and the range of color change could be controlled by contents of AA. Among the as-prepared freshness indicators, 'G0.12_A0.5' which consisting 0.12g of BCG and 0.5g of AA was selected as an optimum composition due to the highest visibility at TMA 20 mg% corresponding to the minimal spoilage level. The color of the indicator changed from yellow to green for spoilage indication of chicken breast, which could be easily seen with the naked eyes and well consistent with the simulation results. It is expected that our developed freshness indicator can be useful in monitoring various food freshness and quality.

닭가슴살의 품질변화를 실시간으로 모니터링하기 위하여 pH 지시약, AA, 다공성 기재인 $Tyvek^{(R)}$을 이용하여 신선도 인디케이터를 제조하였다. 닭가슴살의 대표적인 지표물질은 TVBN과 $CO_2$이며, 이는 저장기간에 따라 미생물의 증식과 단백질 분해를 통해 증가한다. 닭가슴살 저장실험 결과 미생물 수로 판단한 초기부패단계의 $CO_2$ 농도와 TVBN 발생량은 각각 19%와 23 mg%로 확인되었다. 지표물질 발생량 데이터를 토대로 BCG 및 AA의 농도별 인디케이터를 제조하여 인디케이터 색변화 시뮬레이션을 실시하였다. 그 결과, AA의 함량에 따른 인디케이터의 색변화구간 조절 가능성이 확인되었으며, 제조한 인디케이터 중 "G0.12_A0.5"의 인디케이터가 닭가슴살 초기 부패판정 농도인 TMA 20 mg%에서 육안으로 확인할 수 있는 뚜렷한 색변화를 보였다. 시뮬레이션을 통해 선정된 최적 조성의 인디케이터를 닭가슴살 포장내부에 부착하였으며, $4^{\circ}C$$10^{\circ}C$에서 8일동안 닭가슴살의 이화학적 변화와 그에 따른 인디케이터의 색변화를 관찰하였다. 그 결과, TCD 값을 통해 판단된 인디케이터의 색변화 발생일이 각 온도별 닭가슴살 초기부패판정일과 잘 부합하였으며, 이를 통해 시뮬레이션의 신뢰성을 확보할 수 있는 것으로 확인되었다. 본 연구 결과는 저장 중 닭가슴살의 품질변화를 제조한 인디케이터의 포장 내 부착을 통하여 감지하고 실시간 신선도 판단이 가능할 것으로 사료된다.

Keywords

References

  1. Feliciano, L. 2009. Color changing plastics for food packaging. Retrieved from Ohio State University, Columbus, Ohio.
  2. Kuswandi, B., Wicaksono, Y., Abdullah, A., Heng, L. Y., and Ahmad, M. 2011. Smart packaging: Sensors for monitoring of food quality and safety. Sens. Instrumen. Food Qual. 5: 137-146. https://doi.org/10.1007/s11694-011-9120-x
  3. Mahalik, N. P. 2009. Processing and packaging automation systems: A review. Sens. Instrumen. Food Qual. 3: 12-25. https://doi.org/10.1007/s11694-009-9076-2
  4. McDermott, P., Zhao, S., Wagner, D., Simjee, S., Walker, R., and White, D. 2002. The food safety perspective of antibiotic resistance. Anim. bBiotechnol., 13: 71-84. https://doi.org/10.1081/ABIO-120005771
  5. Mills, A. 2005. Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev. 34: 1003-1011. https://doi.org/10.1039/b503997p
  6. Gould, G. W. 1996. Methods for preservation and extension of shelf life. Int. J. Food Microbiol. 33: 51-64. https://doi.org/10.1016/0168-1605(96)01133-6
  7. Shin, H. Y., Ku, K. J., Park, S. K., and Song, K. B. 2006. Use of freshness indicator for determination of freshness and quality change of beef and pork during storage. Korean J. Food Sci. Technol. 38: 325-330.
  8. Shin, H. Y., Ku, K. J., Park, S. K., and Song, K. B. 2006. Use of freshness indicator for determination of freshness and quality change of chicken during storage. Korean J. Food Sci. Technol. 35: 761-767.
  9. Dainty, R. 1996. Chemical/biochemical detection of spoilage. Int. J. Food Microbiol. 33: 19-33. https://doi.org/10.1016/0168-1605(96)01137-3
  10. Hempel, A., O'Sullivan, M., Papkovsky, D., and Kerry, J. 2013. Use of smart packaging technologies for monitoring and extending the shelf-life quality of modified atmosphere packaged (MAP) bread: application of intelligent oxygen sensors and active ethanol emitters. Eur. Food Res. Technol. 237: 117-124. https://doi.org/10.1007/s00217-013-1968-z
  11. Smolander, M. and Ahvenainen, R. 2003. Novel food packaging techniques. Woodhead Publishing Cambridge, UK, 127-143.
  12. Yam, K. L., Takhistov, P. T., and Miltz, J. 2005. Intelligent packaging: Concepts and applications. J. Food Sci. 70: 1-10.
  13. Hogan, S. and Kerry, J. 2008. Smart packaging technologies for fast moving consumer goods. John Wiley & Sons Ltd., West Sussex, England, 33-59.
  14. Her, J.-Y., Lee, S.-M., Kim, S.-W., and Lee, K.-G. 2010. Smart packaging technology: Time-temperature indicator and freshness indicator. Food Sci. Ind. 43: 2-13.
  15. Nopwinyuwong, A., Trevanich, S., and Suppakul, P. 2010. Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta, 81: 1126-1132. https://doi.org/10.1016/j.talanta.2010.02.008
  16. Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., and Diamond, D. 2006. Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69: 515-520. https://doi.org/10.1016/j.talanta.2005.10.046
  17. Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., and Diamond, D. 2007. Development of a smart packaging for the monitoring of fish spoilage. Food Chem. 102: 466-470. https://doi.org/10.1016/j.foodchem.2006.05.052
  18. Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T., and Suppakul, P. 2014. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130: 547-554. https://doi.org/10.1016/j.talanta.2014.07.048
  19. Smolander, M., Hurme, E., Latva-Kala, K., Luoma, T., Alakomi, H.-L., and Ahvenainen, R. 2002. Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts. Innov. Food Sci. Emerg. Ttechnol. 3: 279-288. https://doi.org/10.1016/S1466-8564(02)00043-7
  20. Kuswandi, B., Oktaviana, R., Abdullah, A., and Heng, L. Y. 2014. A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packag. Technol. Sci. 27: 69-81. https://doi.org/10.1002/pts.2016
  21. Chun, H.-N., Kim, B., and Shin, H.-S. 2014. Evaluation of a freshness indicator for quality of fish products during storage. Food Sci. Biotechnol. 23: 1719-1725. https://doi.org/10.1007/s10068-014-0235-9
  22. Russell, S., Fletcher, D., and Cox, N. 1995. Spoilage bacteria of fresh broiler chicken carcasses. Poultry Sci. 74: 2041-2047. https://doi.org/10.3382/ps.0742041
  23. Baston, O., Tofan, I., Stroia, A. L., Moise, D., and Barna, O. 2008. Food Technol. 2: 37-43.
  24. Loughran, M. and Diamond, D. 2000. Monitoring of volatile bases in fish sample headspace using an acidochromic dye. Food Chem. 69: 97-103. https://doi.org/10.1016/S0308-8146(99)00224-1
  25. Blocher, J. 2009. The effect of relative humidity on the microbial barrier properties of porous packaging materials used in the medical device industry. Master degree dissertation, Clemson University.
  26. Mills, J., Donnison, A., and Brightwell, G. 2014. Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: A review. Meat Sci. 98: 71-80. https://doi.org/10.1016/j.meatsci.2014.05.002
  27. Mielnik, M., Dainty, R., Lundby, F., and Mielnik, J. 1999. The effect of evaporative air chilling and storage temperature on quality and shelf life of fresh chicken carcasses. Poultry Sci. 78: 1065-1073. https://doi.org/10.1093/ps/78.7.1065
  28. Butler, O., Bratzler, L., and Mallmann, W. 1953. The effect of bacteria on the color of prepackaged retail beef cuts. Food Technol. 7: 397-400.
  29. Hunt, R. W. G. and Pointer, M. R. 2011. Measuring colour. John Wiley & Sons, 1-469.
  30. Balamatsia, C., Paleologos, E., Kontominas, M., and Savvaidis, I. 2006. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at $4^{\circ}C$: Possible role of biogenic amines as spoilage indicators. Anton Leeuw Int. J. G. 89: 9-17. https://doi.org/10.1007/s10482-005-9003-4
  31. Senter, S. D., Arnold, J. W., and Chew, V. 2000. APC values and volatile compounds formed in commercially processed, raw chicken parts during storage at 4 and $13^{\circ}C$ and under simulated temperature abuse conditions. J. Sci. Food Agr. 80: 1559-1564. https://doi.org/10.1002/1097-0010(200008)80:10<1559::AID-JSFA686>3.0.CO;2-8
  32. Balamatsia, C. C., Patsias, A., Kontominas, M. G., and Savvaidis, I. N. 2007. Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: Correlation with microbiological and sensory attributes. Food Chem. 104: 1622-1628. https://doi.org/10.1016/j.foodchem.2007.03.013
  33. Rokka, M., Eerola, S., Smolander, M., Alakomi, H.-L., and Ahvenainen, R. 2004. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions: B. Biogenic amines as quality-indicating metabolites. Food Control 15: 601-607. https://doi.org/10.1016/j.foodcont.2003.10.002
  34. Ministry of Food and Drug Safety. 2015. Korean Food Standards Codex 2015-55. Republic of Korea.
  35. Byun, J.-S., Min, J. S., Kim, I. S., Kim, J.-W., Chung, M.-S., and Lee, M. 2003. Comparison of indicators of microbial quality of meat during aerobic cold storage. J. Food Protect. 66: 1733-1737. https://doi.org/10.4315/0362-028X-66.9.1733
  36. Kim, Y.-H., Yang, S.-Y., and Lee, M.-H. 1988. The effect of freezing rates on the physico-chemical changes of chicken meat during frozen storage at $20^{\circ}C$. Korean J. Poult. Sci. 20: 447-452.
  37. Francis, F. 1982. Colorimetry of foods. Food Technol. 36: 36.