• Title/Summary/Keyword: Food(dairy) Industry

Search Result 208, Processing Time 0.025 seconds

Production of Conjugated Linoleic Acid by Lactobacillus acidophilus and Their Industrial Application (Lactobacillus acidophilus의 산업적 이용과 CLA 생성)

  • Baick, Seung-Cheon;Chung, Gwan-Seop;Kim, Cheol-Hyeon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.119-130
    • /
    • 2004
  • Application of lactic acid bacteria in the markets are divided into four categories: dairy industry, health food industry, animal feed industry and pharmaceutical industries. Recently, Lactobacillus acidophilus have been used in the food industry and have obtained great attention as key cultures for health benefit. Since commercial application of L. acidophilus has become a common practice, characterization of these cultures were made. Futhermore, the strains selected should produce a final dairy product possessing good taste and acceptable body and texture, a selection step that cannot be achieved unless the product is actually manufactured. Conjugated linoleic acid (CLA) have been recognized as antioxidants, cancer inhibitors, cholesterol depressing agents, and growth promoting factors. Food products from ruminants, particularly dairy products, are the major dietary source of CLA f3r humans. The CLA content in yogurt or cheese can be increased by action of the starter cultures. The finding of the production of CLA by food starter culture opens interesting perspectives far the future in producing fermented products enriched in CLA.

  • PDF

The Consideration of Chinese Dairy Industry (중국의 유가공 산업 고찰)

  • Lee, Jong-Uk;Min, Byeong-Tae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.49-63
    • /
    • 2005
  • China that holds various and plentiful food resources had little growth in dairy industry compared with her long history. But after the establishment the People's Republic of China, It began to activate. Because of the economic growth and the improvement of living standard of China, dairy products were becoming common food, so Chinese dairy industry was considering as a industry which accomplishes a rapid growth. On the ground of a sudden economic growth, the progress of income level of China and the open economy, the world dairy industry was concerned about the Chinese market, so, the Chinese dairy industry would bring an exorbitant change in the world dairy industry. Therefore, We Korean dairy industry must make inroads into the Chinese market by making a royalty profit through the transfer of technical know-how and the export of dairy products.

  • PDF

Nanofood Materials and Approachable Development of Nanofunctional Dairy Products (나도 식품 소재와 나노 기능성 유제품 개발의 가능성)

  • Gwak, Hae-Su;Kim, Dong-Myeong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Nanofood is advanced functional food which food industry and food scientist try to develop process foods in near future. To be developed nanofood, nanofood materials are needed, such as biodegradable nanosphere material, biotechnical nanofood material, and protein and nanofood material. There are some food industrial applications with nanotechnology, such as nanoencapsulation, nanomolecule making, nanoparticle and powder making, nano separation, and nano extration. We can find several nanofoods and nanofood materials on the market. In addition, dairy industry is also in the first step for the development of nanofunctional food. However, nanoencapsulations of lactase, iron, vitamin C, isoflavone are developed for functional milk. Dairy industry needs various nanofood materials to be advanced functional dairy products.

  • PDF

Use of Probiotics in Dairy Industry to Improve Productivity and as an Alternative to Antibiotics (낙농산업에서 항생제 사용의 문제점과 프로바이오틱스의 활용을 통한 생산성 향상)

  • Seo, Yeongeun;Yoo, Yoonjeong;Yoon, Yohan
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.63-67
    • /
    • 2021
  • Antibiotics are widely used to improve productivity in the dairy industry. However, the inappropriate use of antibiotics causes the deterioration in the quality of dairy products undergoing fermentation and maturation. Hence, probiotic use is emerging as an alternative to curb the increased utilization of antibiotics. Probiotics are defined as "living microorganisms that, when administered in appropriate amounts, confer health benefits on the host." They may improve host disease resistance by regulating intestinal microflora balance and promote animal growth and development. In the dairy industry, probiotics have been studied to increase milk production by improving digestion in dairy cows, enhance the content of dairy components such as milk fat and protein, reduce the risk of mastitis in cows, and increase calf weight. Thus, the use of probiotics can improve the production and safety of dairy products. However, some probiotics are still unstable during storage and have low quality and safety issues. Therefore, to reduce the use of antibiotics in the dairy industry, probiotics should be developed and produced considering the above-mentioned problems.

Effects of a Soaking-Fermentation-Drying Process on the Isoflavone and ${\gamma}$-Aminobutyric acid Contents of Soybean

  • Kim, Tae-Jin;Sung, Chang-Hyun;Kim, Young-Jin;Jung, Byung-Moon;Kim, Eung-Ryool;Choi, Won-Sun;Jung, Hoo-Kil;Chun, Ho-Nam;Kim, Woo-Jung;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • In our study, lactic acid bacteria (LAB)-fermented whey solutions were applied in the soybean soaking process to minimize bacterial contamination and to enrich the biologically functional components of isoflavone and $\gamma$-aminobutyric acid (GABA). Among the 11 LAB tested, Bifidobacteria infantis and a mixed culture (Lactobacillus acidophilus, Bifidobacteria lactis, and Streptococcus thermophilus; ABT-3) displaying the greatest $\beta$-glucosidase activity were selected to produce improved biologically functional soybean preparations. In the soybean soaking processing (without water spraying), the LAB-cultured 10% whey solution was used to soak and to ferment the soybeans and the fermented soybeans were finally dried by heat-blowing at $55^{\circ}C$. The processing conditions used in this study demonstrated that the final soybean product had a reduced contamination by aerobic and coliform bacteria, compared to raw soybeans, likely due to the decrease in pH during LAB fermentation. The aglycone content of the isoflavone increased up to 44.6 mg per 100 g of dried soybean by the processing method, or approximately 8-9 times as much as their initial content. The GABA contents in the processed samples increased as the processing time of soaking-fermentation proceeded as well. The soybean sample that fermented by ABT-3 culture for 24 hr showed the greatest increase in GABA content (23.95 to 97.79 mg/100 g), probably as a result of the activity of glutamate decarboxylases (GAD) released from the soybean or produced by LAB during the soaking process.