• Title/Summary/Keyword: Folding (bending)

Search Result 37, Processing Time 0.021 seconds

A Study on the Bending Process for the Circular Curved Tube and Rectangular Curved Tube with Fins (핀이 부착된 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Kim M. G.;Park J. W.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.204-207
    • /
    • 2001
  • The bending process for the circular curved tube and rectangular curved tube with fins can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables. The one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the one by the different hole diameter. The results of the experiment show that the circular curved tube with fins and rectangular curved tube with pins can be formed by the extrusion process and that the curveture of the product can be controlled by the velocity of punch and diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube the folding and wrinkling of thin tube and fins did not happen after the bending processing by the extrusion bending machine.

  • PDF

A Study on the Hot Metal Extrusion Bending Process for the Rectangular Curved Tube (사각단면 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Park D. Y.;Youn S. H.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.212-215
    • /
    • 2001
  • The bending process for the rectangular curved tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables, the one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the difference by the different hole diameter. The results of the experiment show that the rectangular curved tube can be formed by the extrusion process and that the curvature of the curved product can be controlled by the velocity of punch and the diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling of thin tube did not happen after the bending processing by the extrusion bending machine.

  • PDF

Extru-Bending Process for Aluminum Tube Products with Rectangular Sections (각단면을 가지는 알루미늄 튜브제품의 압출굽힘가공)

  • 박대윤;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.285-288
    • /
    • 2003
  • The bending phenomenon during extruding one product using four billets can be obtain by the difference of hole diameters in the multi-hole container. The difference of hole diameter caused the difference of billet amount inserted in the die cavity. As results, it can bend during extruding products by the different amount of two billets and by the cohesion of billets in the porthole dies cavity. And the bending curvature can be controlled by the size of holes and billets. The experiments using aluminium material had been done for the rectangular and square curved tube product. The results of the experiment show that the curved aluminum tube product can be bended by the extru-bending process without the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling. The curvature of product is affected by shape of cross section and the difference of billet diameters. It is known that the welding and extruding and bending can be done simultaneously in the die cavity when a rectangular hollow curved tube would be extruded by porthole dies using four different size billets made of aluminum material.

  • PDF

A Study on the Bending Process for the Curved Tube by Hot Metal Extrusion Machine with the Multiple Punches Moving in the Different Velocity (다지형 압출펀치의 상대이동 속도 차이에 의한 금속 곡관의 열간금속 압출굽힘가공에 관한 연구)

  • Park D. Y.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.102-105
    • /
    • 2001
  • The bending process for the curved tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon has been studied to be occurred by the different of velocity at the die extrusion. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the welding of billets inside the porthole die chamber. The multiple billets are moving differently by the multiple extrusion punches controlled by PLC with the servo mechanism units. The results of the experiments show that the curved tube can be bended by the extrusion process and that the defects such as the distortion of section and the thickness change of thick tube, tile folding and wrinkling of thin tube can not be shown after the bending processing by the extrusion bending machine.

  • PDF

Fabrication of an Oxide-based Optical Sensor on a Stretchable Substrate (스트레처블 기판상에 산화물 기반의 광센서 제작)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.79-85
    • /
    • 2022
  • Recently, a smartphone manufactured on a flexible substrate has been released as an electronic device, and research on a stretchable electronic device is in progress. In this paper, a silicon-based stretchable material is made and used as a substrate to implement and evaluate an optical sensor device using oxide semiconductor. To this end, a substrate that stretches well at room temperature was made using a silicone-based solution rubber, and the elongation of 350% of the material was confirmed, and optical properties such as reflectivity, transmittance, and absorbance were measured. Next, since the surface of these materials is hydrophobic, oxygen-based plasma surface treatment was performed to clean the surface and change the surface to hydrophilicity. After depositing an AZO-based oxide film with vacuum equipment, an Ag electrode was formed using a cotton swab or a metal mast to complete the photosensor. The optoelectronic device analyzed the change in current according to the voltage when light was irradiated and when it was not, and the photocurrent caused by light was observed. In addition, the effect of the optical sensor according to the folding was additionally tested using a bending machine. In the future, we plan to intensively study folding (bending) and stretching optical devices by forming stretchable semiconductor materials and electrodes on stretchable substrates.

Hot Metal Extru-Bending Process for Curved Aluminum Tube Products with Circular or Rectangular Sections (원형 또는 사각 단면을 가지는 알루미늄 곡관 튜브제품의 열간금속압출굽힘가공)

  • Park D. Y;Jin I. T
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.663-670
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container. The difference of velocity at the die exit can be controlled by the two variables, the one of them is the different velocity of extrusion punch through the multi-hole container, the other is the difference of hole diameter of muliti-hole container. In this paper the difference of hole diameter is applied. So it can bend during extruding products because of the different amount of two billets when billets would be bonded in the porthole dies cavity. And the bending curvature can be controlled by the size of holes. The experiments with aluminum material for the curved tube product had been done for circular or rectangular curved tube section. The results of the experiments show that the curved tube product can be formed by the extru-bending process without the defects such as distortion of section and thickness change of wall of tube and folding and wrinkling. The curvature of product can be controlled by shape of cross section and the difference of billet diameters. And it is known that the bonding and extruding and bending process can be done simultaneously in the die cavity by the experiments that rectangular hollow curved tubes could be extruded by porthole dies with four different size billets made of aluminum material. And it shows that bending phenomenon can happen during extruding with for different billets from the analysis by DEFORM-3D.

A Basic Study of Crashworthiness Optimization Using Homogenization Method(II) (균질화법을 이용한 충돌 최적화 기초 연구(II))

  • 조용범;신효철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.181-191
    • /
    • 2002
  • The homogenization method is applied to maximize crash energy absorption for a given volume. Optimization analysis off closed-hat type example problem is conducted with different impact velocities and thicknesses. The results show that the bending-type deformation for the original design is changed to the folding-type deformation for a new design with a hole, which is partly due to the increase of the crash energy absorption for the new design. Dynamic mean crushing loads of the original and new design are compared with those by the theoretical equation by Wierzbicki. It shows that the dynamic mean crushing loads of new designs are very close to those by Wierzbicki's equation.

Design of a Hinge Bracket Forming Process Using Thick Plate (후판을 이용한 힌지 브래킷 성형 공정 설계)

  • Jang, M.G.;Choi, H.S.;Lee, H.K.;Shin, Y.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.227-234
    • /
    • 2016
  • In the transportation between countries using container, too many empty containers must be transported due to the transportation unbalance. For transportation efficiency, therefore, foldable containers are being developed. Hinge brackets are important parts of foldable containers because great force is applied on the hinges during loading onto and unloading from ships. In this study, the hinge bracket for a foldable container is designed to be made using thick plate or bulk materials to endure the heavy loads. The forming process for the hinge bracket using a thick plate is designed via numerical analysis. First of all, the shape of bracket is designed for the better formability. Bending and successive side wall thickening processes are employed for the forming of the hinge bracket. Maximum thickening that can be achieved in a single stage of forming without a folding defect is determined and three stage of thickening processes are designed.

The Die Design of STS304 Bezel Frame for The Strength Reinforcement in Hemming Process (강도보강용 STS304 베젤 프레임 헤밍 공정의 금형 설계)

  • Kim, G.H.;Lee, S.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2008
  • As the structure of a mobile phone becomes thin to catch up with a slim product trend, the structural strength and resistance to shock of TFT-LCD module are getting to be reduced. Hence, TFT-LCD module is the strength reinforced by bezel frame. The bezel frame was produced by the multi hemming processes with several folding parts. The determination of the optimal number of hemming part and structure of bezel frame are very important process parameter to obtain the strength of that. The effect of process parameters on strength of bezel frame was investigated by FEA. Based on the result of FEA, the experiment was performed using manufactured hemming die, the result of the experiment was compared with FEA and verified. Also, three point bending tests were performed to check the strength of bezel frame.

Physical Performance of Metallic Jacquard Fabrics (메탈릭 자카드 직물 물리적 성능평가)

  • Kang, Duck-Hee;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.1
    • /
    • pp.149-159
    • /
    • 2009
  • The purposes of this study are to evaluate physical performance of metallic Jacquard fabrics, and to contribute to the research and development of the women's suit made of the metallic Jacquard fabrics. First, eight fabrics were woven with two kinds of warp yarns(nylon and rayon) and weft yarn blended with various contents(0, 7, 14, 21%) of metallic yarn. Second, the mechanical properties were measured by using the KES-FB system, and physical properties such as tensile strength, tearing strength, abrasion resistance, drape, pilling, snagging, degree of crease resistance, flexural stiffness, specular gloss, folding endurance and electrostatic propensity were measured. The results were as follows. As the metal fiber content increased, bending, shear, thickness and weight increased, which imply low recovery of wrinkles. It means that metallic Jacquard fabrics enable to use as a memory fabric. 7% metallic Jacquard fabric showed a low value at total hand value, but there was little change. As the metal fiber content increased, tensile strength, tearing strength, drape coefficient, specular gloss and flexural stiffness increased, however the degree of crease resistance, electrostatic propensity and folding endurance decreased. The metallic Jacquard fabrics were excellent in snagging, abrasion resistance and pilling.