• Title/Summary/Keyword: Fog Computing

Search Result 90, Processing Time 0.039 seconds

Branch Structure Partitioning of DAG for Partial Offloading (부분 오프로딩을 위한 DAG의 분기구조 분할)

  • Baik, Jae-seok;Jang, Min-seok;Lee, Yon-sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.621-623
    • /
    • 2022
  • 본 논문은 FEC (Fog Edge Computing) 환경의 모바일 장치에서 요구되는 서비스의 구현 모듈을 에지 서버에 부분 오프로딩하기 위하여, 서비스 구현 모듈의 DAG 토폴로지에 포함된 분기구조의 분할 방법을 제안한다. 제안 방법은 최소-컷 문제를 적용하여 분기구조들의 오프로딩 여부 결정, 부분 모듈들의 실행위치 결정 및 최적 실행경로 추출에 유용하게 사용된다.

  • PDF

DNA (Data, Network, AI) Based Intelligent Information Technology (DNA (Data, Network, AI) 기반 지능형 정보 기술)

  • Youn, Joosang;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.247-249
    • /
    • 2020
  • In the era of the 4th industrial revolution, the demand for convergence between ICT technologies is increasing in various fields. Accordingly, a new term that combines data, network, and artificial intelligence technology, DNA (Data, Network, AI) is in use. and has recently become a hot topic. DNA has various potential technology to be able to develop intelligent application in the real world. Therefore, this paper introduces the reviewed papers on the service image placement mechanism based on the logical fog network, the mobility support scheme based on machine learning for Industrial wireless sensor network, the prediction of the following BCI performance by means of spectral EEG characteristics, the warning classification method based on artificial neural network using topics of source code and natural language processing model for data visualization interaction with chatbot, related on DNA technology.

Modification Performance Comparison of SQLite3 Mobile Databases (SQLite3 모바일 데이터베이스의 갱신 성능 비교)

  • Choi, Jin-oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1571-1576
    • /
    • 2018
  • Recently, the attractive changes of mobile device are a improvement of the computing performance, dramatic improvement of storage capacity, constant connection to the internet, and sophisticated development of display technology. As a result, database applications utilizing mobile devices are emerging. These applications include databases for mobile servers, databases for edge computing, and fog computing. Therefore, it is important to pay attention to the current mobile database and pay attention to whether it has suitable performance for the applications. In this paper, the most common mobile database, SQLite3 is selected and experimented to test and understand the update performance and characteristics. The results of experiment are compared with the one of Oracle database at the same condition to evaluate the experiment. As a result, Insert Performance of SQLite3 has a lot of points to be improved and Update performance is very good. Especially, the performance of Range Query is excellent.

Comparison of Update Performance by File System of Mobile Database SQLite3 (모바일 데이터베이스 SQLite3의 File System별 갱신 성능 비교)

  • Choi, Jin-oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1117-1122
    • /
    • 2020
  • The improving performance and utilizing application fields of mobile devices are getting bigger and wider. With this trend, applications that use database engines on mobile devices are also becoming common. Applications requiring mobile databases include mobile server databases, edge computing, fog computing, and the like. By the way, the most representative and widely used mobile database is SQLite3. In this paper, we test and compare the update performance of SQLite3 by some file systems. The update performance of the file systems in the mobile environment is an important performance factor in the limited H/W environment. The comparison file system was chosen as FAT, Ext2, and NTFS. Under the same conditions, experiments with each file system to test update performance and characteristics were processed. From the experimental results, we could analyze the advantages and disadvantages of each file system for each database update pattern.

A Design of Cooperation Coordinator using Band-Cloud

  • Min, Seongwon;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.90-97
    • /
    • 2017
  • The Internet of Things(IoT) market is expected to grow from 15.5billion to 75.4 billion by 2015-2025. As the number of IoT devices increases, the amount of data that is sent to the cloud is increasing. Today's Cloud Computing models are not suited to handle the vast amount of data generated by IoT devices. In this paper, we propose a Cooperation Coordinator System that reduces server load and improved real-time processing capability under specific circumstances by using Band-Cloud. The cooperation coordinator system dynamically forms the cloud when cooperation is needed between mobile devices located near. It is called Band-Cloud. Band-Cloud provides services entrusted by Central Cloud. This paper describes the proposed system and shows the cooperation process using the Android-based mobile devices and Wi-Fi Direct technology. Such a system can be applied to cases where real-time processing is required in a narrow area such as a hospital ward or a school classroom.

On the Application of Channel Characteristic-Based Physical Layer Authentication in Industrial Wireless Networks

  • Wang, Qiuhua;Kang, Mingyang;Yuan, Lifeng;Wang, Yunlu;Miao, Gongxun;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2255-2281
    • /
    • 2021
  • Channel characteristic-based physical layer authentication is one potential identity authentication scheme in wireless communication, such as used in a fog computing environment. While existing channel characteristic-based physical layer authentication schemes may be efficient when deployed in the conventional wireless network environment, they may be less efficient and practical for the industrial wireless communication environment due to the varying requirements. We observe that this is a topic that is understudied, and therefore in this paper, we review the constructions and performance of several commonly used test statistics and analyze their performance in typical industrial wireless networks using simulation experiments. The findings from the simulations show a number of limitations in existing channel characteristic-based physical layer authentication schemes. Therefore, we believe that it is a good idea to combine machine learning and multiple test statistics for identity authentication in future industrial wireless network deployment. Four machine learning methods prove that the scheme significantly improves the authentication accuracy and solves the challenge of choosing a threshold.

Heterogeneous Sensor Data Analysis Using Efficient Adaptive Artificial Neural Network on FPGA Based Edge Gateway

  • Gaikwad, Nikhil B.;Tiwari, Varun;Keskar, Avinash;Shivaprakash, NC
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4865-4885
    • /
    • 2019
  • We propose a FPGA based design that performs real-time power-efficient analysis of heterogeneous sensor data using adaptive ANN on edge gateway of smart military wearables. In this work, four independent ANN classifiers are developed with optimum topologies. Out of which human activity, BP and toxic gas classifier are multiclass and ECG classifier is binary. These classifiers are later integrated into a single adaptive ANN hardware with a select line(s) that switches the hardware architecture as per the sensor type. Five versions of adaptive ANN with different precisions have been synthesized into IP cores. These IP cores are implemented and tested on Xilinx Artix-7 FPGA using Microblaze test system and LabVIEW based sensor simulators. The hardware analysis shows that the adaptive ANN even with 8-bit precision is the most efficient IP core in terms of hardware resource utilization and power consumption without compromising much on classification accuracy. This IP core requires only 31 microseconds for classification by consuming only 12 milliwatts of power. The proposed adaptive ANN design saves 61% to 97% of different FPGA resources and 44% of power as compared with the independent implementations. In addition, 96.87% to 98.75% of data throughput reduction is achieved by this edge gateway.

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

Autonomous Mobile-Based Model for Tawaf / Sa'ay Rounds Counting with Supported Supplications from the Quran and Sunna'a

  • Nashwan, Alromema
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.205-211
    • /
    • 2022
  • Performing the rituals of Hajj and Umrah is an obligation of Allah Almighty to all Muslims from all over the world. Millions of Muslims visit the holy mosques in Makkah every year to perform Hajj and Umrah. One of the most important pillars in Performing Hajj/Umrah is Tawaf and Sa'ay. Tawaf finished by seven rounds around the holy house (Al-Kabaa) and Sa'ay is also seven runs between As-Safa and Al-Marwa. Counting/knowing the number of runs during Tawaf/Sa'ay is one of the difficulties that many pilgrims face. The pilgrim's confusing for counting (Tawaf/Sa'ay) rounds finished at a specific time leads pilgrims to stay more time in Mataff bowl or Masa'a run causing stampedes and more crowded as well as losing the desired time for prayers to get closer to Almighty Allah in this holy place. These issues can be solved using effective crowd management systems for Tawaf/Sa'ay pillars, which is the topic of this research paper. While smart devices and their applications are gaining popularity in helping pilgrims for performing Hajj/Umrah activities efficiently, little has been dedicated for solving these issues. We present an autonomous Mobile-based framework for guiding pilgrims during Tawaf/Sa'ay pillars with the aid of GPS for points tracking and rounds counting. This framework is specially designed to prevent and manage stampedes during Tawaf/Sa'ay pillars, by helping pilgrims automatically counting the rounds during Tawaf/Sa'ay with supported Supplications (in written/audio form with different languages) from the Quran and Sunna'a.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.