• Title/Summary/Keyword: Foaming Ceramic

Search Result 41, Processing Time 0.025 seconds

Thermal properties of silica fume-SiO2 based porous ceramic fabricated by using foaming method (직접 발포법을 이용해 제조된 실리카 흄-SiO2계 다공성 세라믹의 열적 특성)

  • Ha, Taewan;Kang, Seunggu;Kim, Kangduk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.182-189
    • /
    • 2021
  • Porous ceramics were manufactured using the foaming method for the development of inorganic insulating materials. Silica fume and SiO2 were used as main raw materials, and bentonite was used as a rapid setting agent for uniform structure formation of porous ceramics. The porous ceramics were sintered at 1200℃, and porosity, density, compressive strength, microstructure and thermal conductivity were analyzed. As the content of silica fume to SiO2 of the porous ceramics increased 70 to 90 %, the specific gravity increased from 0.63 to 0.69, and the compressive strength increased from 9.41 Mpa to 12.86 Mpa. But, the porosity showed a tendency to decrease from 72.07 % to 70.82 %, contrary to the specific gravity. As a result of measuring the thermal conductivity, the porous ceramic with a silica fume content of 70 % showed a thermal conductivity of 0.75 to 0.72 W/m·K at 25 to 800℃, respectively, and, another that a silica fume content of 90 % showed a 0.66~0.86 W/m·K. So the lower the silica f ume content, the lower the thermal conductivity, which was conf irmed to be consistent with porosity result. As a result of microstructure analysis using SEM (Scanning Electron Microscope), pores in the range of tens to hundreds ㎛ were observed inside and outside the porous ceramic, and it was confirmed that the pore distribution was relatively uniform.

A Study on Fabrication and Characterization of Inorganic Insulation Material by Hydrothermal Synthesis Method (1) (수열합성법을 이용한 무기계 단열소재 제조방법 및 특성에 관한 연구 (1))

  • Seo, Sung-Kwan;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.219-224
    • /
    • 2013
  • In this study, the inorganic insulating material was fabricated with quartzite, ordinary portland cement(OPC), lime and anhydrous gypsum. After characteristic analysis of slurry, the optimum mixing ratio was derived with different $CaO/SiO_2$ mole ratio. Based on derived mixing ratio, the inorganic insulating material was fabricated at different water content and hydrothermal synthesis conditions. Specific gravity was $0.26g/cm^3$, compressive strength was 0.4 MPa, and thermal conductivity was 0.064 W/mK. This properties were enhanced performance of conventional ALC (Autoclaved Lightweight Concrete). And it can replace organic insulation with harmless inorganic insulation through continues research and development.

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • v.28
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

Preparation and Characteristics of Catalyst Coated Cordierite Filter (촉매 처리된 코디어라이트 필터의 제조 및 그 특성)

  • Kim, Yeong-Bae;Jo, Eul-Hun;Jang, Yun-Yeong;Sin, Min-Cheol;Lee, Hui-Su;Choe, Deok-Gyun
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The optimum condition for fabricating cordierite disc type filter element was deduced. Cordierite monolith was used as starting material for filter element because it has many advantages such as high thermal shock resistance and good catalytic activity compared with $TiO_2$and SiC. The contents of organic additives and foaming agent were optimized to control the porosity and mechanical strength of cordierite filter. Among the required properties to be adopted as filter elements, the pressure drop and NOx removal efficiency were investigated depending on processing variables. It was found that pressure drop depends on particle size distribution of cordierite monolith and organic additives added as forming agent. The pressure drop at 5cm/sec of face velocity was in the range of 15~655mm$H_2O$ at room temperature. The NOx removal efficiency of catalytic filter with $V_2O_5$ as catalyst was over 85% at $450^{\circ}C$.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass (물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구)

  • Kim, Hyeong-Jun;Park, Jewon;Na, Hyein;Lim, Hyung Mi;Chang, Gabin
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.

Silver Coating on the Porous Pellets from Porphyry Rock and Application to an Antibacterial Media (반암(맥반석)으로 제조한 다공성 펠렛의 Ag 담지 및 항균 메디아로서의 적용)

  • Han, Yo-Sep;Kim, Hyun-Jung;Shin, Young-Seop;Park, Jai-Koo;Ko, Jae-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The porous pellets were prepared from porphyry by slurry foaming method. The effect of sintering temperatures on pore structure of porous porphyry pellets with different extension ratio ($E_R$) was investigated by specific surface area, water absorption and porosity, which changed with sintering temperatures. When the sintering temperatures increased from $975^{\circ}C$ to $1075^{\circ}C$, specific surface area and water absorption of the all samples decreased. In case of the sample with an equal sintering temperature, $E_R=3.0$ pellets had little influence on pore structure compared to the $E_R=2.0$ pellets. As a results, it was shown by SEM that facilitated formation of micro pores at $E_R=2.0$ pellets shrunk increasingly after sintering process. At $E_R=3.0$ and sintering temperature at $1025^{\circ}C$, optimum conditions of the porous porphyry porous pellets was found. Also, Escherichia coli removal efficiency of the silver-containing porphoyry porous pellets was measured for the feasibility as a antibacterial media. The antibacterial activity of prepared silver-containing sample was maintained above 90% for 40 days.

Preparation of Porous Silica Support and TiO2 Coating by Sol-Gel Method (다공성 실리카 지지체 제조 및 Sol-Gel법에 의한 TiO2코팅)

  • 한요섭;박재구
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.548-554
    • /
    • 2004
  • A sol-gel method was applied to coat TiO$_2$ on porous silica prepared using slurry foaming method from silica. from the results of XRD, SEM, and BET, the anatase phase was firstly observed at the coated supports with the heated of 50$0^{\circ}C$. The coated supports with the heated of $700^{\circ}C$ had the maximum anatase peak, and the particle size of coated TiO$_2$ was about 1 ${\mu}{\textrm}{m}$. Bending strength and gas permeability of the porous silica were measured for the feasibility as a catalytic supports. In case of the uncoated porous materials with the strength of 2.4 MPa, the strength increased to 3.9∼4.3 MPa after the coating process regardless of the heating temperature. On the other hand, the permeability of the uncoated porous materials decreased from 770${\times}$10$^{-13}$ $m^2$ to 363${\times}$10$^{-13}$ $m^2$ after the coating process, and it decreased with the increasing heating temperature.

De-NOx Characteristics for Cu-ZSM5/Alumina Beads Catalyst Filter in Urea-SCR System (Urea-SCR 시스템에서의 Cu-ZSM5/알루미나 비드 촉매필터의 De-NOx 특성)

  • Jang, Young-Sang;Shin, Young-Seop;Lee, Byoung-Jun;Park, Jai-Koo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.60-67
    • /
    • 2008
  • The catalytic filter of Cu-ZSM5/alumina beads was considered to reduce NOx in the urea SCR system. Catalytic support of porous alumina beads with mean pore size $130{\mu}m$ and porosity $75{\sim}83%$ were prepared using foaming and gel-casting method. The Cu-ZSM5 catalysts were coated on the supporting alumina beads using $Cu(NO_3)_2$ by ion exchange method. After a washcoating process was applied to coat 10w% Cu-ZSM5 on porous alumina bead, coating layer was estimated $20{\mu}m$ in thickness. The characterization and the feasibility as a catalytic supports were investigated. And the NOx conversion test in Cu-ZSM5/Alumina Beads filter system was conducted by using Urea as reductants under laboratory test. The NOx conversion was increased as size and porosity of beads and observed more than 95% excellent NOx conversion above $300^{\circ}C$.