• Title/Summary/Keyword: Foam sheet

Search Result 55, Processing Time 0.028 seconds

Analysis on the Impact of Composite by Using FEM (유한요소법을 이용한 복합재료의 충격에 관한 해석)

  • Kim, Sung-Soo;Kim, Young-Chun;Hong, Soon-Jik;Kook, Jeong-Han;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.542-547
    • /
    • 2013
  • In this study, mechanical property on the composite material of aluminum foam core is investigated by simulation analysis. Impact energies such as 50J, 70J, and 100J are applied to the specimen model. The maximum load occurs at 3.4ms for 50J, 3.2ms for 70J, and 3.2ms for 100J respectively. The striker penetrates the upper face sheet, causing the core to be damaged at 50J test but the lower face sheet remains intact with no damage. It results in occurring with the energy of 52 J. At 70J test, it penetrates the upper face sheet and penetrated the core. And the striker causes the lower face sheet with damage. And it results in occurring with the energy of 65 J. Finally at 100J test, the striker penetrated both the upper face sheet and core and even the lower face sheet. The load becomes maximum at the time when striker penetrates through the upper plate and it rapidly reduced. And then the load increases rapidly when reaching the lower face sheet. And it decreases again. It results in occurring with the energy of 95 J.

A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam (폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;신경섭;박진원
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.564-570
    • /
    • 2000
  • The waste FRP occured in the fabrication of SMC (sheet molding compound) bathtubs and the waste polyurethane foam occured in electronic manufacture and waste insulator were applied as a soundproof and light weight pannel in the waste FRP unsaturated polyester matrix resin composites to recycle. The effect of filler contents on the mechanical properties and interfacial phenomena of the filler and matrix on the composites was evaluated. The tensile strength of composites reached its maximum value of 82.34 MPa when the filler content was 70 wt%, and the more content of reinforcement is increased, the more tensile modulus was decreased. The flexural strength and modulus of composites, reinforced 70 wt% with filler content, were dominant compared to the other samples to 72.5 MPa, 958.4 MPa respectively. When composite of reinforced 70 wt% with filler content, it was confirmed that pull out phenomena and cracks did not occur in the interface of reinforcement and matrix resin through the SEM observation. Also, waste FRP and urethane foam were dispersed well into matrix resin as filler.

  • PDF

Mold Filling and Mechanical Properties of Thin Sectioned Al-Si Alloy Fabricated by Lost Foam Casting Process (소실모형주조법으로 제조한 박판형 Al-Si합금에서의 주형 충전 및 기계적 성질)

  • Kim, Jeong-Min;Lee, Jae-Cheol;Choi, Jin-Young;Cho, Jae-Ik;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.186-192
    • /
    • 2017
  • The lost foam casting method was used to fabricate Al-Si alloy thin sheet specimens; the effects of chemical composition and process variables on the mold filling and mechanical properties were investigated. The mold filling capability was observed to be proportional to the pouring temperature, and both the vibration imposed during the casting and the application of a pattern coating had rather negative effects. The mold filling capability also decreased with the addition of Mg or TiB. When the Mg content increased, the tensile strength of the cast alloy was enhanced, but the elongation decreased. However, after T6 heat treatment, both the strength and the elongation were improved. TiB addition for grain refining or pattern coating did not significantly affect the tensile properties.

Investigation into development of post-processing system to improve geometrical conformity of VLM-$_{ST}$ parts for the detail shape (VLM-$_{ST}$ 제품의 국부형상 정밀도 향상을 위한 후가공 공정개발에 관한 연구)

  • 김효찬;안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.274-278
    • /
    • 2002
  • Surface finishing is still indispensable for most rapid prototyping (RP) processes because of the inherent stair-stepped surface and shrinkage of the parts. These problems can be minimized in the $VLM-_ST$ Process, because it uses expandable polystyrene foam sheets, each of which has a thickness of3.9 mm and a linear-interpolated side slope. The use of thick layers, however, limits the process capability of constructing fine details. This study focuses on the design of post-processing tool for fine details of $VLM-_ST$ parts and investigation of thermal characteristics during EPS foam cutting using the post-processing tool. To calculate the heat flux from the tool into the foam sheet, the tool was modeled as a heat source of radiation for finite element analysis. Results of the analysis agreed well with those of the experiment.

  • PDF

Effects of Irradiation Crosslinking and Molecular Weight Properties on Crosslinked PP Foaming Process (전자선 조사량과 분자량 특성이 전자선 가교 PP 발포 가공에 미치는 영향)

  • 홍다윗;윤광중;백운선;정영헌;이준길
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.508-515
    • /
    • 2002
  • The effects of the crosslinking caused by irradiation dose, molecular weights of the foaming materials, and various foaming processes on the foam structure of the polypropylene (PP) were investigated. The maximum gel content of the PP was 48% when the sheet was irradiated with 3.2 Mrad. This high gel content improved the cell structures by providing high thermal stability. The increase of both the gel content and structural development were stopped at the irradiation dose exceeding 3.2 Mrad. The increase of the molecular weights served to help produce a foam with particularly fine and even cell structures, along with improved thermal stability as well.

Study on Sol-Gel Prepared Phosphosilicate Glass-Ceramic For Low Temperature Phosphorus Diffusion into Silicon

  • Kim, Young-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.32-36
    • /
    • 2001
  • A new solid source for low temperature diffusion into silicon was developed. The source wafer consists of an “active” compound, which is sol-gel prepared phosphosilicate glass-ceramics containing 56% P$_2$O$\sub$5/, embedded in a skeletal foam-like, inert substrate. Phosphorus diffusion from the new solid sources at low temperatures (800-875$^{\circ}C$) produced reprodecible sheet resistances and shallow junctions. From a series of one hour doping runs, the life time of the phosphosilicate source was determined to be over 40 hours. The effective diffusion coefficient of phosphorus into silicon and the corresponding activation energy at 850$^{\circ}C$ were determined to be 7.5${\times}$10$\^$-15/ $\textrm{cm}^2$/sec and ∼3.9 eV, respectively.

  • PDF

A New Circular Patch Antenna with Circular Polarization (새로운 형태의 원편파 원형 패치 안테나)

  • 이석곤;이용구;안병철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.364-368
    • /
    • 2000
  • In this paper, we present the design and fabrication of a new circularly polarized circular patch antenna. The antenna is realized using a plastic foam sheet, a Teflon substrate and a metal-coated film. The radiating element is a circular patch proximity-fed by a wide microstrip line. Two thins slots are introduced on the circular patch to obtain a circular polarized radiation. The antenna is optimized using a commercial software. The antenna has 18% impedance bandwidth, 4% axial-ratio band width and 9.12dBi gain.

  • PDF

Investigation of Cutting Characteristics of Linear Hotwire Cutting System and Bonding Characteristics of Expandable Polystyrene Foam for Variable Lamination Manufacturing(VLM) Process (가변 적층 쾌속 조형 공저 개발을 위한 발포 폴리스티렌폼의 선형 열선 절단시스템 절단 특성 및 접착강도 특성에 대한 연구)

  • Ahn, Dong-Gyu;Lee, Sang-Ho;Yang, Dong-Yol;Shin, Bo-Sung;Lee, Yong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.185-194
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain of RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S), and to investigate characteristics of part material, cutting characteristics by using linear hotwire cutting system and bonding. Experiments were carried out to investigate mechanical properties of part material such as anisotropy and directional tensile strength. In order to obtain optimal dimensional accuracy, surface roughness, and reduced cutting time, addition experiments were performed to find the relationship between cutting speed and cutting offset of hotwire, and heat generation of hotwire per unit length. So, adhesion strength tests according to ASTM test procedure showed that delamination did not occur at bonded area. Based on the data, a clover-shape was fabricated using unit shape part(USP) it is generated hotwire cutting. The results of present study have been reflected on the enhancement of the VLM-S process and apparatus.

  • PDF

Effect of Dissolved and Colloidal Contaminants of Newsprint Machine White Water on Water Surface Tension and Paper Physical Properties

  • Consultant, Seika-Tay
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.61-69
    • /
    • 1999
  • Contaminants such as fatty acids, triglycerides, resin acids and foam collected from a high yield sulfite weak liquor storage tank lowered the water surface tension and reduced inter-fibre bonding but also tended to benefit sheet opacity. Some common wet end additives such as defoamers and dispersants gave similar results. Lignosulfonate and naphthalene sulfonate showed little if any negative effect on both surface tension and sheet strength properties. Among the natural wood extractives. fatty acids were identified to be most detrimental followed by triglycerides and then resin acids. In order to alleviate the detrimental impact of these contaminants, membrane separation, air floatation and ozone treatment were carried out on paper machine white water samples. The effect of these treatments on removal of fatty and resin acids was quantified by a GC-Mass analysis. Reverse osmosis with a 1000 molecular weight cut off membrane failed to totally reject fatty and resin acids, but markedly reduced losses of sheet properties due to contaminants. Ozone treatment resulted in a significant increase of the surface tension and air floatation was considered to be a practical and useful method for removing fatty and resin acids from the machine white water.

Removal of Gaseous Styrene using a Pilot-Scale Rotating Drum Biotrickling Filter (Pilot-scale 회전식 드럼 바이오필터를 이용한 Styrene 제거)

  • Hwang, Jae-Woong;Lim, Ji-Sung;Chang, Seok-Jin;Lee, Eun-Yul;Choi, Cha-Yong;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.188-193
    • /
    • 2006
  • A new type of biofilter, a rotating drum biotrickling filter(RDBF), was developed and operated for the removal of styrene from industrial waste gas. The porous polyurethane foam sheet was used as a packing materials for the RDBF and a pure culture of Gram-positive bacterium Brevibacillus sp. SP1 was used as an inoculum. The reactor showed a short start-up period of 18 days, during which uniform biofilms were developed on the packing. During a steady operation at an incoming styrene concentration of $200ppm_v$ and a retention time of 0.5 min, a high and stable removal of styrene over 95% was observed. The maximum elimination capacity was estimated to be $125g/m^3{\cdot}hr$. The outstanding performance was attributed to an efficient gas-liquid mass transfer and the appropriate supply of nutrient solution to the biofilm microorganisms on the packing by the rotation of the drum.