• Title/Summary/Keyword: Foam generation

Search Result 95, Processing Time 0.028 seconds

Thermal Characteristics of Eire-Protection Aqueous Film Forming Foams for Various Expansion Ratios (소방용 수성막 폼의 비체적 변화에 따른 열적 특성 연구)

  • Kim Hong-Sik;Kim Youn-Jea;Hwang In-Ju
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In order to evaluate the performance of fire-protection foams used to protect structures from heat and fire damages, the thermal characteristics of them are experimentally investigated. This research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test apparatus for fire-protection foams subjected to fire radiation is developed. It involves a foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of 115℃~20℃. At this point, each trace generally rises to a temperature of approximately 90℃. The temperature gradient in the foam as time passes increases with increasing the foam expansion ratio. In addition, it is found that the temperature gradient along the foam for depth decreases with increasing the foam expansion ratio.

Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process (가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예)

  • 이상호;김태화;안동규;양동열;채희창;문영복;신보성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.763-766
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stackin, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain RP apparatus. The objective of this study is to develop software for automatic generation of unit shape part (USP) for a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material (VLM-S). In order to examine the applicability of the developed software to VLM-S, USP's of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

Antioxidant Effects of Hirsutanone Derivatives from Alnus Japonica on Copper Mediated human LDL Oxidation

  • Kim, Ju-Ryoung;Lee, Dae-Woo;Lee, Woo-Song;Cho, Kyung-Hyun;Sok, Dai-Eun;Jeong, Tae-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.141.2-141.2
    • /
    • 2003
  • Subendothelial accumulation of foam cells plays a key role in the initiation of atherosclerosis. These foam cells accumulate in fatty streaks that evolve to more complex fibrofatty or atheromatous plaques. Oxidized LDL may also be involved in atherogenesis by inducing smooth muscle cell proliferation and smooth muscle foam cell generation. (omitted)

  • PDF

Numerical study of the flow smulation and visualization in the co-extrusion die using OpenFOAMⓇ (OpenFOAMⓇ을 이용한 공압출기 다이 내부 유동 모사 및 가시화에 관한 수치 연구)

  • Mun, Jun Ho;Kim, Ju Hyeon;Mun, Sang Ho;Kim, See Jo
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.3
    • /
    • pp.5-11
    • /
    • 2013
  • It is of great importance to obtain the uniform layer thickness in the multi-layer co-extrusion processes. In the present study, the three-dimensional numerical simulation was carried out using the open source code named OpenFOAM(R) to understand the flow characteristics in the multi-layer die. In this numerical study, Multi-thin-layers were successfully computed depending on the number of repeating units. The generation mechanism for the multi-layer was numerically verified by the flow simulation and visualization in the co-extrusion die using OpenFOAM(R). The results suggested that the multi-layer has a divided and folded mechanism similar to the stretching and folding in the chaotic flow.

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode

  • Um, Ji Hyun;Kim, Hyunwoo;Cho, Yong-Hun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.92-98
    • /
    • 2020
  • SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.

A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery (열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.

Reduction of the Foam Generated in the Discharge Channel of a Power Plant (발전소 배수로에서 발생하는 거품 저감 방법)

  • Oh, Young-Min;Oh, Sang-Ho;Jang, Se-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.235-240
    • /
    • 2010
  • The foam produced by the effluent cooling water which is released to the discharge channel provokes civil complaints due to the visual pollution to the neighboring residents. In this study, a physical model test was conducted by placing tetrapods on the bottom slope of the discharge channel in order to suggest an effective method of reducing the amount of generated foam. Field application of the main results of the model test showed qualitatively apparent reduction of the foam generation at the discharge channel.

Development of Algorithms for Accuracy Improvement in Transfer-Type Variable Lamination Manufacturing Process using Expandable Polystrene Foam (VLM-ST공정의 정밀도 향상을 위한 알고리즘 개발)

  • 최홍석;이상호;안동규;양동열;박두섭;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.212-221
    • /
    • 2003
  • In order to reduce the lead-time and cost, the technology of rapid prototyping (RP) has been widely used. A new rapid prototyping process, transfer-type variable lamination manufacturing process by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost and additional post-processing. At the same time, VLM Slicer, the CAD/CAM software for VLM-ST has been developed. In this study, algorithms for accuracy improvement of VLM-ST, which include offset and overrun of a cutting path and generation of a reference shape are developed. Offset algorithm improves cutting accuracy, overrun algorithm enables the VLM-ST process to make a shape of sharp edge and reference shape generation algorithm adds additional shape which makes off-line lamination easier. In addition, proposed algorithms are applied to practical CAD models for verification.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Effect of Protein Concentration on Foam Separation in a Seawater Aquarium (해수활어수조의 포말분리시 단백질 농도의 영향)

  • SUH Kuen-Hack;SHIN Jeong-Sik;LEE Chang-Kuen;LEE Seok-Hee;CHEON Jae-Kee;JO Jae-Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • Effect of initial protein concentration on the protein removal rate was assessed for seawater aquarium using a foam separator. Protein removal rate was increased and removal efficiency was decreased with the increase of initial protein concentration. Enrichment ratio was decreased and foam generation rate was increased with the increase of initial protein concentration. Total suspended solids (TSS) removal rate was increased with the increase of initial protein concentration, and TSS removal efficiency was decreased with the increase of initial protein concentration. Turbidity removal rate and removal efficiency were increased with the increase of initial protein concentration.