Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00493

SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode  

Um, Ji Hyun (Department of Energy Science, Sungkyunkwan University)
Kim, Hyunwoo (Department of Energy Science, Sungkyunkwan University)
Cho, Yong-Hun (Division of Energy Engineering, Kangwon National University)
Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.1, 2020 , pp. 92-98 More about this Journal
Abstract
SnO2-based high-capacity anode materials are attractive candidate for the next-generation high-performance lithium-ion batteries since the theoretical capacity of SnO2 can be ideally extended from 781 to 1494 mAh g-1. Here 3D etched Cu foam is applied as a current collector for electron path and simultaneously a substrate for the SnO2 coating, for developing an integrated electrode structure. We fabricate the 3D etched Cu foam through an auto-catalytic electroless plating method, and then coat the SnO2 onto the self-supporting substrate through a simple sol-gel method. The catalytic dissolution of Cu metal makes secondary pores of both several micrometers and several tens of micrometers at the surface of Cu foam strut, besides main channel-like interconnected pores. Especially, the additional surface pores on etched Cu foam are intended for penetrating the individual strut of Cu foam, and thereby increasing the surface area for SnO2 coating by using even the internal of Cu foam. The increased areal capacity with high structural integrity upon cycling is demonstrated in the SnO2-coated 3D etched Cu foam. This study not only prepares the etched Cu foam using the spontaneous chemical reactions but also demonstrates the potential for electroless plating method about surface modification on various metal substrates.
Keywords
$SnO_2$; Cu Foam; Electroless Plating; Areal Capacity; Lithium-Ion Batteries;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J.-M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.   DOI
2 J.S. Chen and X.W. Lou, Small, 2013, 9(11), 1877-1893.   DOI
3 S.-H. Yu, S.H. Lee, D.J. Lee, Y.-E. Sung and T. Hyeon, Small, 2016, 12(16), 2146-2172.   DOI
4 L.E. Downie, L.J. Krause, J.C. Burns, L.D. Jensen, V.L. Chevrier and J.R. Dahn, J. Electrochem. Soc., 2013, 160(4), A588-A594.   DOI
5 I.A. Courtney and J.R. Dahn, J. Electrochem. Soc., 1997, 144(6), 2045-2052.   DOI
6 H. Kim, G.O. Park, Y. Kim, S. Muhammad, J. Yoo, M. Balasubramanian, Y.-H. Cho, M.-G. Kim, B. Lee, K. Kang, H. Kim, J.M. Kim and W.-S. Yoon, Chem. Mater., 2014, 26(22), 6361-6370.   DOI
7 H. Zhang, X. Yu and P.V. Braun, Nat. Nanotechnol., 2011, 6(5), 277-281.   DOI
8 H. Zhang and P.V. Braun, Nano Lett., 2012, 12(6), 2778-2783.   DOI
9 X. Li, A. Dhanabalan, L. Gu and C. Wang, Adv. Energy Mater., 2012, 2(2), 238-244.   DOI
10 J.H. Um, H. Park, Y.-H. Cho, M.P.B. Glazer, D.C. Dunand, H. Choe and Y.-E. Sung, RSC Adv., 2014, 4, 58059-58063.   DOI
11 J.H. Um, M. Choi, H. Park, Y.-H. Cho, D.C. Dunand, H. Choe and Y.-E. Sung, Sci. Rep., 2016, 6, 18626.   DOI
12 Y. Fu, Z. Yang, X. Li, X. Wang, D. Liu, D. Hu, L. Qiao and D. He, J. Mater. Chem. A, 2013, 1(34), 10002-10007.   DOI
13 W. Ni, H.B. Wu, B. Wang, R. Xu and X.W. Lou, Small, 2012, 8(22), 3432-3437.   DOI
14 M. Madian, M. Klose, T. Jaumann, A. Gebert, S. Oswald, N. Ismail, A. Eychmuller, J. Eckert and L. Giebeler, J. Mater. Chem. A, 2016, 4(15), 5542-5552.   DOI
15 W. Zeng, F. Zheng, R. Li, Y. Zhan, Y. Li and J. Liu, Nanoscale, 2012, 4(8), 2760-2765.   DOI
16 W. Ren, C. Wang, L. Lu, D. Li, C. Cheng and J. Liu, J. Mater. Chem. A, 2013, 1(43), 13433-13438.   DOI
17 J.M. Haag, G. Pattanaik and M.F. Durstock, Adv. Mater., 2013, 25(23), 3238-3243.   DOI
18 K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin and M.V. Kovalenko, J. Am. Chem. Soc., 2013, 135(11), 4199-4202.   DOI
19 X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, Mater. Lett., 2003, 57(24-25), 3987-3991.   DOI
20 N. Umirov, D.-H. Seo, K.-N. Jung, H.-Y. Kim and S.-S. Kim, J. Electrochem. Sci. Technol., 2019, 10, 82-88.   DOI
21 L. Shi, C. Fan, C. Sun, Z. Ren, X. Fu, G. Qian and Z. Wang, RSC Adv., 2015, 5(36), 28611-28618.   DOI
22 S. Liang, J. Zhou, A. Pan, X. Zhang, Y. Tang, X. Tan, T. Chen and R. Wu, J. Power Sources, 2013, 228, 178-184.   DOI
23 Z. Jin, C. Liu, K. Qi and X. Cui, Sci. Rep., 2017, 7, 39695.   DOI
24 C. Hou, X.-M. Shi, C.-X. Zhao, X.-Y. Lang, L.-L. Zhao, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li and Q. Jiang, J. Mater. Chem. A, 2014, 2(37), 15519-15526.   DOI
25 A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.- J. Pan, W.-N. Su and B.-J. Hwang, J. Mater. Chem. A, 2016, 4(6), 2205-2216.   DOI
26 X. Li, Y. Liu, S. Li, J. Huang, Y. Wu and D. Yu, Nanoscale Res. Lett., 2016, 11, 470-477.   DOI
27 J.-M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville and J.-M. Gilles, Phys. Rev. B, 1992, 46(4), 2460-2466.   DOI
28 D. Su, X. Xie, S. Dou and G. Wang, Sci. Rep., 2014, 4, 5753.   DOI
29 Y. Chen, J. Li, G. Yue and X. Luo, Nano-micro Lett., 2017, 9, 32-42.   DOI
30 N.R. Srinivasan, S. Mitra and R. Bandyopadhyaya, Phys. Chem. Chem. Phys., 2014, 16(14), 6630-6640.   DOI
31 Y. Yang, X. Ji, F. Lu, Q. Chen and C.E. Banks, Phys. Chem. Chem. Phys., 2013, 15(36), 15098-15105.   DOI
32 J. Li, Y. Zhao, N. Wang and L. Guan, Chem. Commun., 2011, 47(18), 5238-5240.   DOI