• Title/Summary/Keyword: Flywheel energy storage system

Search Result 153, Processing Time 0.031 seconds

A Consideration on the Superconductivity Energy Storage Technology (초전도 에너지 저장 기술에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.691-698
    • /
    • 2015
  • Recently, the power industry has a great interest in the superconducting energy storage device as a way to maximize energy efficiency to cope with global warming. A superconducting energy storage device can archive maximization of electric energy use efficiency by storing in the form of a magnetic field energy or a kinetic energy without loss a large amount of electrical energy at the non-peak load and then converting it again into electric energy at the peak load. Therefore, in this study, such as the concept of the superconducting energy storage technologies, the present state of its research and development and its applications are surveyed and analyzed to establish methodology applying the superconducting energy storage technologies to power system.

A Control Strategy for Flywheel Energy Storage / Recovery System with Induction Machine (유도기를 이용한 플라이휠 에너지 저장 및 재생 시스템 제어 기법)

  • Son Jang-Kyung;Lee Hong-Hee;Nho Eui-Cheol;Kim Heung-Gun;Chun Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.494-500
    • /
    • 2005
  • The paper proposed a control strategy for flywheel energy/recovery system with induction machine at the dynamic UPS system using the flywheel stored mechanical energy. The performances for the vector controlled induction generator are compared with those for the induction generator using slip control method. The strategy to improve the transient responses for dc link capacitor voltage is suggested at the transition from the motoring mode to the generating mode. The strategy Proposed by the paper is verified with experiment results using 32bit DSP.

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석)

  • 최상규;김영철;경진호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;경진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

Power Compensation by Flywheel Energy Storage System (플라이휠 에너지저장 장치를 이용한 전력보상)

  • 김윤호;이경훈;박경수
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.326-332
    • /
    • 1999
  • The flywheel generator in use as a power source for experimental device can be large enough to generate the electric power to make it suitable for application in wide rage of industries. The proposed system pruduces the good performance for power control. In this paper, the validity of the flywheel for power storage is described and the new control method which applies the space vector control scheme are proposed. This system is superior to conventional power compensator in the aspect of stability improvement and it is possible to make the converter capacity small. Continuous operation by flywheel can be realized even during power network faults such as 1-line ground.

  • PDF

Kinetic Energy Recovery System for Electric Vehicles (전기자동차용 기계적 에너지 회생장치)

  • Shin, Eung-Soo;Bang, Jae-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.440-445
    • /
    • 2011
  • This paper presents a new regenerative brake system of electric vehicles that employs a continuous variable transmission(CVT) and a flywheel. The developed device has advantages over existing regenerative brakes from a standpoint of reliability and versatility in actual driving conditions. The system consists of a CVT, two wheels, a flywheel, a coupling and auxiliary powertrain components. The CVT is designed as a combination of two cones and a roller, which causes the velocity difference between the wheel and the flywheel. The power flow of the flywheel system is controlled by the CVT roller and the coupling through step motors. A prototype has been developed and then its performance has been investigated for various operating conditions. Results show that the storage efficiency of the flywheel is much affected by the vehicle's velocity and it is reduced below 20% for high speed, as compared to the 25% efficiency for an ideal condition. The CVT is a primary factor for lowering the flywheel efficiencies due to large friction and slipping between the cone and the roller.

A study on the power compensation using flywheel energy storage unit and circulating type cycloconverter (플라이휠과 순환전류형 싸이크로컨버터를 이용한 전력보상에 관한 연구)

  • Ryu, Ho-Seon;Lee, Byeong-Ha;Oh, Sang-Rok;Whang, In-Ho;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.403-405
    • /
    • 1994
  • The dynamic behavior of circulating current cycloconverter and flywheel energy storage unit is the subject of this investigation. The system of this type can control of real and reactive power flow between flywheel-cycloconverter and power three phase network. In this paper, waveform level simulation indicates that power flow control of is possible and this system can be used to varible application.

  • PDF

Design and Analysis of High Speed Motor/Generator for 5kWh Flywheel Energy Storage System (5kWh급 플라이휠 에너지 저장장치용 초고속 전동발전기의 설계 및 특성해석)

  • Jang, S.M.;Cho, H.W.;Lee, S.H.;Ryu, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1051-1053
    • /
    • 2003
  • Flywheel Energy Storage System (FESS) consists of a high-speed flywheel with an integral motor/generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the FESS motor/generator are a popular choice. since there are no excitation losses which mean substantial increase in the efficiency. In this paper, the basic design and the steady-state performances of a permanent magnet synchronous high speed motor/generator for FESS are presented.

  • PDF