• 제목/요약/키워드: Flying State

검색결과 91건 처리시간 0.028초

초고밀도 광디스크 시스템용 슬라이더 부상상태 해석을 위한 Dual Solver 개발 (Development of Dual Solver to Analyze the Flying State of ODD Head Slider)

  • 이상순;김광선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.702-705
    • /
    • 2001
  • This paper deals with a method to predict the flying state of the head slider in a optical disk drive(ODD). The Dual Solver based on the Quasi-Newton method and the Newton method has been developed to simulate the steady-state flying conditions. The numerical results show the effectiveness and reliability of this new solver.

  • PDF

3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구 (Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD)

  • 오승혁;이상훈;장건희
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.

NFR 방식 Optical Flying Head의 형상 최적설계 (Optimal Design of Optical Flying Head for Near-Field Recording)

  • 김석훈;윤상준;최동훈;정태건;박진무;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1165-1169
    • /
    • 2003
  • This paper presents an approach to optimally design the air-bearing surface (ABS) of the optical flying head for near-field recording technology (NFR). NFR is an optical recording technology using very small beam spot size by overcoming the limit of beam diffraction. One of the most Important problems in NFR is a head disk interface (HDI) issue over the recording band during the operation. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state. The optimal solution of the slider, whose target flying height is 50 nm, is automatically obtained. The flying height during the steady state operation becomes closer to the target values than those fur the initial one. The pitch and roll angles are also kept within suitable ranges over the recording band. Especially, all of the air-bearing stiffness are drastically increased by the optimized geometry of the air bearing surface.

  • PDF

최적화 기법을 이용한 HDD용 헤드 슬라이더의 부상상태 해석 (A Flying State Analysis of HDD Head Slider by Using An Optimization Technique)

  • 윤상준;김존관;최동훈;이재헌;김광식
    • Tribology and Lubricants
    • /
    • 제8권2호
    • /
    • pp.26-34
    • /
    • 1992
  • This paper suggests a method to predict the flying state of the head slider in a hard disk drive (HDD) by using an optimization technique. The modified Reynolds equation for the hydrodynamic lubrication theory under the slip flow condition is used to describe the air-bearing system and a Finite Volume Method (FVM) is applied to solve the equation. Especially, Augmented Lagrange Multiplier (ALM) method is employed to find the minimum flying height, the pitch angle and the roll angle of the slider, which is shown to be faster and more general than the conventional update schemes. By using the proposed method, the variations of the flying state are analyzed as a function of the slider position in the direction of the disk radius for various disk velocities and skew angles.

DC 배전용 반도체 변압기를 위한 직렬 연결된 플라잉 커패시터 멀티-레벨 정류기의 모델 예측 제어 방법 (A Model Predictive Control Method of a Cascaded Flying Capacitor Multi-level Rectifier for Solid State Transformer for DC Distribution System)

  • 김시환;장영혁;김준성;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.359-365
    • /
    • 2018
  • This study introduces a model predictive control method for controlling a cascaded flying capacitor multilevel rectifier used as an AC-DC rectifier of a solid-state transformer for DC distribution systems. The proposed method reduces the number of states that need to be considered in model predictive control by separately controlling input current, output DC link voltage, and flying capacitor voltage. Thus, calculation time is shortened to facilitate the level expansion of the cascaded flying capacitor multilevel rectifier. The selection of weighting factors did not present difficulties because the weighting factors in the cost function of the conventional model predictive control are not used. The effectiveness of the proposed method is verified through computer simulation using powersim and experiment.

근접장 기록을 위한 부상형 광학 헤드의 최적설계 (Optimal Design of Optical Flying Head for Near-field Recording)

  • 윤상준;김석훈;정태건;김수경;최동훈
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.785-790
    • /
    • 2003
  • This paper presents an approach to optimally design the air-hearing surface (ABS) of the optical flying head for near-field recording technology (NFR) NFR is an optical recording technology using very small beam spot size by overcoming the limit of beam diffraction. One of the most important problems in NFR Is a head disk interface (HDI) issue over the recording band during the operation. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state. The optimal solution of the slider, whose target flying height is 50 nm, is automatically obtained. The flying height during the steady state operation becomes closer to the target values than those for the Initial one. The pitch and roll angles are also kept within suitable ranges over the recording band. Especially. all of the all-hearing stiffness are drastically increased by the optimized geometry of the air hearing surface.

Head Slider Designs Using Approximation Methods

  • Yoon, Sang-Joon;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.37-44
    • /
    • 2004
  • This paper presents an approach to optimally design the air bearing surface (ABS) of the head slider by using the approximation methods. The reduced basis concept is used to reduce the number of design variables. In the numerical calculation, the progressive quadratic response surface modeling (PQRSM) is used to handle the non-smooth and discontinuous cost function. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state and track seek operations. The optimal solutions of the sliders, whose target flying heights are 12 nm and 9 nm, are automatically obtained. The flying heights during the steady state operation become closer to the target values and the flying height variations during the track seek operation are smaller than those for the initial one. The pitch and roll angles are also kept within suitable ranges over the recording band.

극소 공기막을 갖는 헤드 슬라이더 부상상태 해석 (Flying State Analysis of Head Slider with Ultra-Thin Spacing)

  • 이상순;김광선;임경화
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.15-20
    • /
    • 2003
  • 본 연구에서는 초고밀도 광디스크 시스템이나 하드 디스크 시스템의 헤드 슬라이더의 부상상태를 안정되고 효율적으로 예측하는 수치해석법을 다루고 있다. 뉴톤법과 유사 뉴톤법을 이용하여 정상적인 부상상태들을 예측하기 위해서 Dual Solver를 개발하였다. 수치해석 결과에 의하면, Dual Solver는 초고밀도 광디스크 시스템이나 하드 디스크 시스템용 슬라이더의 부상상태를 해석하는데 효과적이고 신뢰성있는 방법이 될 수 있다.

  • PDF

플라잉 커패시터 멀티-레벨 인버터의 플라잉 커패시터 전압 균형을 위한 캐리어 로테이션 기법 (A Carrier-Rotation Strategy for Voltage Balancing of Flying Capacitors in Flying Capacitor Multi-level Inverter)

  • 이원교;강대욱;김태진;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.630-634
    • /
    • 2003
  • This paper proposes a Carrier-Rotation PWM technique that is new solution for the voltage unbalancing problem of flying capacitors in the Flying Capacitor Multi-level Inverter (FCMI).The proposed PWM technique equalizes the utilization of phase leg voltage redundancies corresponding to the charging and the discharging state of flying capacitors during one switching period of all the switches. it also has the same switch utilization and the reduced harmonics of output voltage. Hence, it is more suitable for the FCMI compared with the conventional solutions. Experimental results on the laboratory prototype flying capacitor 3-level inverter confirm the validity of the proposed PWM technique.

  • PDF

A Novel Five-Level Flying-Capacitor Dual Buck Inverter

  • Liu, Miao;Hong, Feng;Wang, Cheng-Hua
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.133-141
    • /
    • 2016
  • This paper focuses on the development of a Five-Level Flying-Capacitor Dual Buck Inverter (FLFCDBI) based on the main circuit of dual buck inverters. This topology has been described as not having any shoot-through problems, no body-diode reverse recovery problems and the half-cycle work mode found in the traditional Multi-Level Flying-Capacitor Inverter (MLFCI). It has been shown that the flying-capacitor voltages of this inverter can be regulated by the redundant state selection within one pole. The voltage balance of the flying-capacitors can be achieved by charging or discharging in the positive (negative) half cycles by choosing the proper logical algorithms. This system has a simple structure but demonstrates improved performance and reliability. The validity of this inverter is conformed through computer-aided simulation and experimental investigations.