• Title/Summary/Keyword: Flying Ad-hoc Network

Search Result 12, Processing Time 0.022 seconds

FANET:-Communication Architecture and Routing Protocols A Review

  • Moazzam Ali;Adil Idress;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.181-190
    • /
    • 2024
  • FANET (Flying ad-hoc network) is a self-adjusting wireless network that enables easy to deploy flying nodes, inexpensive, flexible such as UAV in the absence of fixed network infrastructure they communicate amoung themselves. Past few decades FANET is only the emerging networks with it's huge range of next-generation applications.FANET is a sub-set of MANET's(Mobile Ad-hoc Network) and UAV networks are known as FANET.Routing enables the flying nodes to establish routes to radio access infrastructure specifically FANET and among themselves coordinate and collaborate.This paper presents a review on existing proposed communication architecture and routing protocols for FANETS.In addition open issues and challenges are summarized in tabular form with proposed solution.Our goal is to provide a general idea to the researchers about different topics to be addressed in future.

Multiple Unmanned Aerial Vehicle(UAV) Collision Avoidance Scheme Using Flying Ad Hoc Network(FANET) (FANET을 이용한 다중 무인비행체의 충돌회피 방안)

  • Yang, Hyun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.127-132
    • /
    • 2018
  • One of the key issues in the Unmanned Aerial Vehicle (: UAV) technology is the collision avoidance. Specifically, the collision avoidance among multiple UAVs is critical to expand UAV applications to civil sector where large number of UAVs could be operated in the limited space. In this paper, we introduce a collision avoidance scheme based on Flying Ad Hoc Network (: FANET). The proposed scheme adopts collision avoidance mechanism used in wireless data communication networks. Using this scheme UAVs can not only communicate conventional user information, but also share flight information to avoid collision.

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.

Secret Sharing based Node Authentication in FANET (FANET에서의 비밀분산 기반 노드 인증)

  • Yang Ji Hun;Lee Soo Jin
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.25-34
    • /
    • 2022
  • This paper proposes a secret sharing based fast node authentication technique applicable to Flying Ad-Hoc Network (FANET) that can be used to construct self-organized communication network in multi drones and drone squadrons operations. Before deployment, each node stores an exponential share, exponential secret and a portion of PUF CRP table. After being deployed in the field, in the early-stage of network formation, each node broadcasts its ID, exponential share and a hash value of PUF Response and pseudo-random number. Then each node performs a reconstruction of the exponential secret using the exponential shares transmitted from neighboring nodes. When the exponential secret is reconstructed, simultaneous authentication is completed for all nodes that have transmitted the exponential share used in the reconstruction. A node that transmits an incorrect exponential share to disturb the reconstruction of the exponential secret during the authentication process can be detected before performing the reconstruction through the verification of the hash value, and will be excluded from the reconstruction.

PUF-based Secure FANET Routing Protocol for Multi-Drone

  • Park, Yoon-Gil;Lee, Soo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.81-90
    • /
    • 2020
  • In order to operate multi drone efficiently, existing control methods must be improved, and drones must be able to construct communication networks autonomously. FANET(Flying Ad-Hoc Network), which is being considered as an alternative to solving these problems, is based on ad hoc network technology and can be exposed to a variety of security vulnerabilities. However, due to the limited computational power and memory of FANET nodes, and rapid and frequent changes in network topology, it is not easy to apply the existing security measures to FANET without modification. Thus, this paper proposes lightweight security measures applicable to FANET, which have distinct characteristics from existing ad hoc networks by utilizing PUF technology. The proposed security measures utilize unique values generated by non-replicable PUFs to increase the safety of AODV, FANET's reactive routing protocol, and are resistant to various attacks.

Research on Unmanned Aerial Vehicle Mobility Model based on Reinforcement Learning (강화학습 기반 무인항공기 이동성 모델에 관한 연구)

  • Kyoung Hun Kim;Min Kyu Cho;Chang Young Park;Jeongho Kim;Soo Hyun Kim;Young Ghyu Sun;Jin Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.33-39
    • /
    • 2023
  • Recently, reinforcement learning has been used to improve the communication performance of flying ad-hoc networks (FANETs) and to design mobility models. Mobility model is a key factor for predicting and controlling the movement of unmmaned aerial vehicle (UAVs). In this paper, we designed and analyzed the performance of Q-learning with fourier basis function approximation and Deep-Q Network (DQN) models for optimal path finding in a three-dimensional virtual environment where UAVs operate. The experimental results show that the DQN model is more suitable for optimal path finding than the Q-learning model in a three-dimensional virtual environment.

Adaptive k-means clustering for Flying Ad-hoc Networks

  • Raza, Ali;Khan, Muhammad Fahad;Maqsood, Muazzam;Haider, Bilal;Aadil, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2670-2685
    • /
    • 2020
  • Flying ad-hoc networks (FANETs) is a vibrant research area nowadays. This type of network ranges from various military and civilian applications. FANET is formed by micro and macro UAVs. Among many other problems, there are two main issues in FANET. Limited energy and high mobility of FANET nodes effect the flight time and routing directly. Clustering is a remedy to handle these types of problems. In this paper, an efficient clustering technique is proposed to handle routing and energy problems. Transmission range of FANET nodes is dynamically tuned accordingly as per their operational requirement. By optimizing the transmission range packet loss ratio (PLR) is minimized and link quality is improved which leads towards reduced energy consumption. To elect optimal cluster heads (CHs) based on their fitness we use k-means. Selection of optimal CHs reduce the routing overhead and improves energy consumption. Our proposed scheme outclasses the existing state-of-the-art techniques, ACO based CACONET and PSO based CLPSO, in terms of energy consumption and cluster building time.

A Hybrid Multiuser Detection Algorithm for Outer Space DS-UWB Ad-hoc Network with Strong Narrowband Interference

  • Yin, Zhendong;Kuang, Yunsheng;Sun, Hongjian;Wu, Zhilu;Tang, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1316-1332
    • /
    • 2012
  • Formation flying is an important technology that enables high cost-effective organization of outer space aircrafts. The ad-hoc wireless network based on direct-sequence ultra-wideband (DS-UWB) techniques is seen as an effective means of establishing wireless communication links between aircrafts. In this paper, based on the theory of matched filter and error bits correction, a hybrid detection algorithm is proposed for realizing multiuser detection (MUD) when the DS-UWB technique is used in the ad-hoc wireless network. The matched filter is used to generate a candidate code set which may contain several error bits. The error bits are then recognized and corrected by an novel error-bit corrector, which consists of two steps: code mapping and clustering. In the former step, based on the modified optimum MUD decision function, a novel mapping function is presented that maps the output candidate codes into a feature space for differentiating the right and wrong codes. In the latter step, the codes are clustered into the right and wrong sets by using the K-means clustering approach. Additionally, in order to prevent some right codes being wrongly classified, a sign judgment method is proposed that reduces the bit error rate (BER) of the system. Compared with the traditional detection approaches, e.g., matched filter, minimum mean square error (MMSE) and decorrelation receiver (DEC), the proposed algorithm can considerably improve the BER performance of the system because of its high probability of recognizing wrong codes. Simulation results show that the proposed algorithm can almost achieve the BER performance of the optimum MUD (OMD). Furthermore, compared with OMD, the proposed algorithm has lower computational complexity, and its BER performance is less sensitive to the number of users.

A Study for Drone to Keep a Formation and Prevent Collisions in Case of Formation Flying (드론의 삼각 편대비행에서 포메이션 유지 및 충돌 방지 제어를 위한 연구)

  • Cho, Eun-sol;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.499-501
    • /
    • 2016
  • In this paper, we suggest an advance method for maintaining a perceived behavior as triangle formation and preventing collision between each other in case of a flying drone. In the existing studies, the collision of the drone is only controlled by using light entered in the camera or the image processing. However, when there is no light, it is difficult to confirm the position of each other and they can collide because this system can not confirm the each other's position. Therefore, in this paper, we propose the system to solve the problems by using the distance and the relative coordinates of the three drones that were determined using the ALPS(Ad hoc network Localized Positioning System) algorithm. This system can be a new algorithm that will prevent collisions between each other during flying the drone object. The proposed algorithm is that we make drones maintaining a determined constant value of the distance between coordinates of each drone and the measured center of the drone of triangle formation. Therefore, if the form of fixed formation is disturbed, they reset the position of the drone so as to keep the distance between each drone and the center coordinates constant. As a result of the simulation, if we use the system where the supposed algorithm is applied, we can expect that it is possible to prevent malfunction or an accident due to collisions by preventing collisions of drones in advanced behavior system.

  • PDF

Autonomous Unmanned Flying Robot Control for Reconfigurable Airborne Wireless Sensor Networks Using Adaptive Gradient Climbing Algorithm (에어노드 기반 무선센서네트워크 구축을 위한 적응형 오르막경사법 기반의 자율무인비행로봇제어)

  • Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • This paper describes efficient flight control algorithms for building a reconfigurable ad-hoc wireless sensor networks between nodes on the ground and airborne nodes mounted on autonomous vehicles to increase the operational range of an aerial robot or the communication connectivity. Two autonomous flight control algorithms based on adaptive gradient climbing approach are developed to steer the aerial vehicles to reach optimal locations for the maximum communication throughputs in the airborne sensor networks. The first autonomous vehicle control algorithm is presented for seeking the source of a scalar signal by directly using the extremum-seeking based forward surge control approach with no position information of the aerial vehicle. The second flight control algorithm is developed with the angular rate command by integrating an adaptive gradient climbing technique which uses an on-line gradient estimator to identify the derivative of a performance cost function. They incorporate the network performance into the feedback path to mitigate interference and noise. A communication propagation model is used to predict the link quality of the communication connectivity between distributed nodes. Simulation study is conducted to evaluate the effectiveness of the proposed reconfigurable airborne wireless networking control algorithms.