DOI QR코드

DOI QR Code

FANET:-Communication Architecture and Routing Protocols A Review

  • Received : 2024.05.05
  • Published : 2024.05.30

Abstract

FANET (Flying ad-hoc network) is a self-adjusting wireless network that enables easy to deploy flying nodes, inexpensive, flexible such as UAV in the absence of fixed network infrastructure they communicate amoung themselves. Past few decades FANET is only the emerging networks with it's huge range of next-generation applications.FANET is a sub-set of MANET's(Mobile Ad-hoc Network) and UAV networks are known as FANET.Routing enables the flying nodes to establish routes to radio access infrastructure specifically FANET and among themselves coordinate and collaborate.This paper presents a review on existing proposed communication architecture and routing protocols for FANETS.In addition open issues and challenges are summarized in tabular form with proposed solution.Our goal is to provide a general idea to the researchers about different topics to be addressed in future.

Keywords

References

  1. K. Singh and A. K. Verma, "Experimental analysis of AODV, DSDV and OLSR routing protocol for flying adhoc networks (FANETs)," 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2015 
  2. Biomo, Jean-Daniel Medjo Me, et al. "Directional Antennas in FANETs: A Performance Analysis of Routing Protocols." 2017 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), 2017
  3. Simarjot Kaur, Arvinder Singh, "Experimental Analysis On Dsdv Protocol For Fanets," International Journal for Research in Applied Science & Engineering Technology (IJRASET) 2016 
  4. K. Singh and A. K. Verma, "Applying OLSR routing in FANETs," 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, 2014 
  5. Maistrenko, Vasily A., et al. "Experimental Estimate of Using the Ant Colony Optimization Algorithm to Solve the Routing Problem in FANET." 2016 International Siberian Conference on Control and Communications (SIBCON), 2016. 
  6. Anuradha Chauhan, and Ms. Renu Singla. "A Detail Review on Unmanned Aeronautical Ad-Hoc Networks." International Journal of Science, Engineering and Technology Research (IJSETR), May 2016. 
  7. Bekmezci, Ilker, et al. "Flying Ad-Hoc Networks (FANETs): A Survey." Ad Hoc Networks, vol. 11, no. 3, 2013, pp. 1254-1270., doi:10.1016/j.adhoc.2012.12.004 
  8. Bani, Muneer, and "Nour Alhuda." "Flying Ad-Hoc Networks: Routing Protocols, Mobility Models, Issues." International Journal of Advanced Computer Science and Applications, vol. 7, no. 6, 2016. 
  9. Cruz E. A comprehensive survey in towards to future FANETs. IEEE Latin America Transactions. 2018;16(3):876-884 
  10. S.K. Singh, A comprehensive survey on FANET: challenges and advancements, Int. J. Comput. Sci. Inf. Technol. 6 (3) (2015) 2010-2013. 
  11. S. Hayat, E. Yanmaz, R. Muzaffar, Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint, IEEE Commun. Surv. Tutor. 18 (4) (2016) 2624-2661. 
  12. I. Bekmezci, E. Sentrk, T. Trker, Security issues in flying Ad-Hoc networks (FANETs), J. Aeronaut. Space Technol. 9 (2) (2016) 13-21. 
  13. G. Vipul, K. Mukesh, An effective review on important issues in unmanned aerial vehicles (UAVs) networks, Int. J. Innov. Res. Comput. Commun. Eng. 4 (6) (June 2016). 
  14. M. Erdelj, M. Krl, E. Natalizio, Wireless sensor networks and multi-UAV systems for natural disaster management, Comput. Netw. 124 (2017) 72-86. 
  15. J.-A. Maxa, M.-S.B. Mahmoud, N. Larrieu, Survey on UAANET routing protocols and network security challenges, Ad-Hoc Sens. Wirel. Netw. (2017). 
  16. Mozaffari, M., Saad, W., Bennis, M., et al. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. arXiv:1803.00680 2018. 
  17. M.M. Azari, F. Rosas, S. Pollin, Cellular Connectivity for UAVs: network modeling, Perform. Anal. Des. Guidel. (2018) arXiv:1804.08121. 
  18. Federal Aviation Administration (FAA), UAS Traffic Management Research Transition Team Plan, Federal Aviation Administration (FAA), January 2017 Technical report. 
  19. M.T. Hyland, Performance Evaluation of Ad-Hoc Routing Protocols in a Swarm of Autonomous Unmanned Aerial Vehicles, Air Force Institute of Tech Wright-Patterson AFB Oh School of Engineering and Management, 2007. 
  20. D.L. Gu, G. Pei, H. Ly, et al., UAV aided intelligent routing for Ad-Hoc wireless network in single-area theater, in: Proceedings of the Wireless Communications and Networking Confernce. WCNC, IEEE, 2000. 
  21. A. Franchi, C. Secchi, M. Ryll, et al., Shared control: balancing autonomy and human assistance with a group of quadrotor UAVs, IEEE Robot. Autom. Mag. 19 (3) (2012) 57-68. 
  22. C.-M. Cheng, P.-H. Hsiao, H.T. Kung, et al., Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm, in: Proceedings of the IEEEWireless Communications and Networking Conference, IEEE, 2007, pp. 4417-4424. 
  23. L.E. Michael, J.-S. Park, M. Gerla, UAV assisted disruption tolerant routing, in: Proceedings of the IEEE Military Communications Conference. MILCOM, IEEE, 2006, pp. 1-5. 
  24. S. Mohseni, R. Hassan, A. Patel, et al., Comparative review study of reactive and proactive routing protocols in MANETs, in: Proceedings of the 4th IEEE International Conference on Digital Ecosystems and Technologies (DEST), IEEE, 2010, pp. 304-309. 
  25. Clausen, T. et Jacquet, P. Optimized link state routing protocol (OLSR). 2003. [55] A.I. Alshabtat, L. Dong, J. Li, et al., Low latency routing algorithm for unmanned aerial vehicles Ad-Hoc networks, Int. J. Electr. Comput. Eng. 6 (1) (2010) 48-54. 
  26. S. Rosati, K. Kruzelecki, Louis Traynard, et al., Speed-aware routing for UAV Ad-Hoc networks, in: Proceedings of the IEEE Globecom Workshops (GC Wkshps), IEEE, 2013, pp. 1367-1373. 
  27. Zheng, Y., Wang, Y., Li, Z., et al. A mobility and load aware OLSR routing protocol for UAV mobile Ad-Hoc networks. 2014. [58] L. Yan, L. Xiling, Cross layer optimization for cooperative mobile Ad-Hoc UAV network, Int. J. Digit. Content Technol. Appl. 6 (18) (2012) 367. 
  28. J.H. Forsmann, R.E. Hiromoto, J. Svoboda, A time-slotted on-demand routing protocol for mobile Ad-Hoc unmanned vehicle systems, in: Proceedings of the International Society for Optics and Photonics Unmanned Systems Technology IX, 2007, p. 65611P. 
  29. R. Shirani, Reactive-greedy-reactive in unmanned aeronautical Ad-Hoc networks: a combinational routing mechanism, Carleton University, 2011. 
  30. Z.Q. Zhai, J. Du, Y. Ren, The application and improvement of temporally ordered routing algorithm in swarm network with unmanned aerial vehicle nodes, in: Proceedings of the 9th IEEE International Conference on Wireless and Mobile Communications, Nice, France, 2013. 
  31. Park, V. Temporally-ordered routing algorithm (TORA) version 1 functional specification. draft-ietf-manet-tora-spec-03. txt, 2000. 
  32. Z.J. Haas, A hybrid framework for routing in Ad-Hoc networks, Ad-Hoc Networking, 2002. 
  33. B. Karp, H.T. Kung, GPSR: greedy perimeter stateless routing for wireless networks, in: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, ACM, 2000, pp. 243-254. 
  34. L. Lin, Q. Sun, S. Wang, et al., A geographic mobility prediction routing protocol for Ad-Hoc UAV network, in: IEEEGlobecom Workshops (GC Wkshps), IEEE, 2012, pp. 1597-1602. 
  35. R.L. Lidowski, B.E. Mullins, R.O. Baldwin, A novel communications protocol using geographic routing for swarming uavs performing a search mission, in: Proceedings of the IEEE International Conference on Pervasive Computing and Communications, PerCom 2009, IEEE, 2009, pp. 1-7. 
  36. Lin Lin, Qibo Sun, Jinglin Li, et al., A novel geographic position mobility oriented routing strategy for UAVs, J. Comput. Inf. Syst. 8 (2) (2012) 709-716. 
  37. E. Kuiper, S. Nadjm-Tehrani, Geographical routing in intermittently connected Ad-Hoc networks, in: Proceedings of the 22nd International Conference on Advanced Information Networking and Applications-Workshops, AINAW 2008, IEEE, 2008, pp. 1690-1695. 
  38. T. Brown, B. Argrow, C. Dixon, et al., Ad-Hoc UAV ground network (augnet), in: Proceedings of the AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, 2004, p. 6321. 
  39. T. Brown, S. Doshi, S. Jadhav, et al., Test bed for a wireless network on small UAVs, in: Proceedings of the AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, 2004, p. 6480. 
  40. M Faessler, F Fontana, C Forster, E Mueggler, M Pizzoli, D Scaramuzza, Autonomous, visionbased flight and live dense 3D mapping with a quadrotor microaerial vehicle, J. Field Robot. 33 (4) (2015) 431-450. 
  41. F Fraundorfer, L Heng, D Honegger, H Lee G, L Meier, P Tanskanen, M Pollefeys, Vision-based autonomous mapping and exploration using a quadrotor MAV, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2012. 
  42. C. Fu, R. Duan, D. Kircali, E. Kayacan, Onboard robust visual tracking for UAVs using a reliable global-local object model, Sensors 16 (9) (2016) 1406. 
  43. E.W. Frew, T.X. Brown, Networking issues for small unmanned aircraft systems, J. Intell. Rob. Syst. 54 (1-3) (2009) 21-37. 
  44. L. Song, T.L. Huang, A summary of key technologies of Ad- Hoc networks with UAV node, in: Proceedings of the International Conference on Intelligent Computing and Integrated Systems (ICISS), 944-, IEEE, 2010, p. 949. 
  45. Z. Zhao, T. Braun, Topology control and mobility strategy for UAV Ad-Hoc networks: a survey, in: Proceedings of the Joint ERCIM eMobility and MobiSense Workshop, Citeseer, 2012, pp. 27-32. 
  46. O.K. Sahingoz, Mobile networking with UAVs: opportunities and challenges, in: Proceedings of the International Conference onUnmanned Aircraft Systems (ICUAS), IEEE, 2013, pp. 933-941. 
  47. J. Li, Y. Zhou, L. Lamont, Communication architectures and protocols for networking unmanned aerial vehicles, in: Proceedings of the IEEE Globecom Workshops (GC Wkshps), IEEE, 2013, pp. 1415-1420. 
  48. K. Namuduri, Y. Wan, M. Gomathisankaran, Mobile Ad-Hoc networks in the sky: state of the art, opportunities, and challenges, in: Proceedings of the Second ACM MobiHoc Workshop on Airborne Networks and Communications, ACM, 2013, p. 25. 
  49. S.K. Singh, A comprehensive survey on FANET: challenges and advancements, Int. J. Comput. Sci. Inf. Technol. 6 (3) (2015) 2010-2013. 
  50. S. Hayat, E. Yanmaz, R. Muzaffar, Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint, IEEE Commun. Surv. Tutor. 18 (4) (2016) 2624-2661. 
  51. I. Bekmezci, E. Sentrk, T. Trker, Security issues in flying Ad-Hoc networks (FANETs), J. Aeronaut. Space Technol. 9 (2) (2016) 13-21. 
  52. G. Vipul, K. Mukesh, An effective review on important issues in unmanned aerial vehicles (UAVs) networks, Int. J. Innov. Res. Comput. Commun. Eng. 4 (6) (June 2016). 
  53. M. Erdelj, M. Krl, E. Natalizio, Wireless sensor networks and multi-UAV systems for natural disaster management, Comput. Netw. 124 (2017) 72-86. 
  54. J.-A. Maxa, M.-S.B. Mahmoud, N. Larrieu, Survey on UAANET routing protocols and network security challenges, Ad-Hoc Sens. Wirel. Netw. (2017). 
  55. Mozaffari, M., Saad, W., Bennis, M., et al. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. arXiv:1803.00680 2018. 
  56. M.M. Azari, F. Rosas, S. Pollin, Cellular Connectivity for UAVs: network modeling, Perform. Anal. Des. Guidel. (2018) arXiv:1804.08121. 
  57. Federal Aviation Administration (FAA), UAS Traffic Management Research Transition Team Plan, Federal Aviation Administration (FAA), January 2017 Technical report 
  58. Azari, M.M., Rosas, F., et Pollin, S. Reshaping cellular networks for the sky: the major factors and feasibility. arXiv:1710.11404 2017. 
  59. R.I. Bor-Yaliniz, A. El-Keyi, H. Yanikomeroglu, Efficient 3-D placement of an aerial base station in next generation cellular networks, in: Proceedings of the IEEE International Conference on Communications (ICC), IEEE, 2016, pp. 1-5. 
  60. E. Kalantari, H. Yanikomeroglu, A. Yon- Gacoglu, On the number and 3D placement of drone base stations in wireless cellular networks, in: Proceedings of the IEEE 84th Vehicular Technology Conference (VTC-Fall), IEEE, 2016, pp. 1-6. 
  61. J. Lyu, Y. Zeng, R. Zhang, et al., Placement optimization of UAV-mounted mobile base stations, IEEE Commun. Lett. 21 (3) (2016) 604-607. 
  62. M. Alzenad, A. El-Keyi, H. Yanikomeroglu, 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements, IEEE Wirel. Commun. Lett. 7 (1) (2018) 38-41. 
  63. M. Mozaffari, W. Saad, M. Bennis, et al., Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization, IEEE Trans. Wirel. Commun. 16 (12) (2017) 8052-8066. 
  64. S. Rohde, M. Putzke, C. Wietfeld, Ad hoc self-healing of OFDMA networks using UAV-based relays, Ad Hoc Netw. 11 (7) (2013) 1893-1906. 
  65. E. Koyuncu, Power-efficient deployment of UAVs as relays, in: Proceedings of the IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE, 2018, pp. 1-5. 
  66. M.M. Azari, Y. Murillo, O. Amin, et al., Coverage maximization for a poisson field of drone cells, in: Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), IEEE, 2017, pp. 1-6. 
  67. M. Chen, M. Mozaffari, W. Saad, et al., Caching in the sky: proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience, IEEE J. Sel. Areas Commun. 35 (5) (2017) 1046-1061. 
  68. H. Wang, G. Ding, F. Gao, et al., Power control in UAV-supported ultra dense networks: communications, caching, and energy transfer, IEEE Commun. Mag.56 (6) (2018) 28-34. 
  69. J.-S. Marier, C.A. Rabbath, N. Lchevin, Health-aware coverage control with application to a team of small UAVs, IEEE Trans. Control Syst. Technol. 21 (5)(2012) 1719-1730. 
  70. Y. Zeng, R. Zhang, Energy-efficient UAV communication with trajectory optimization, IEEE Trans. Wireless Commun. 16 (6) (2017) 3747-3760. 
  71. M. Mozaffari, W. Saad, M. Bennis, et al., Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs, IEEE Trans. Wirel. Commun. 15 (6) (2016) 3949-3963