• Title/Summary/Keyword: Fly ash application

Search Result 221, Processing Time 0.021 seconds

Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase

  • Golewski, Grzegorz Ludwik;Szostak, Bartosz
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.543-556
    • /
    • 2022
  • Fly ash (FA) is the main additive to concretes currently produced. This substitute of ordinary Portland cement (OPC) have a positive effect on the structure and mechanical parameters of mature concrete. Unfortunately, the problem of using FA as the OPC replacement is that it significantly reduces the performance of concretes in the early stages of their curing. This limits the possibility of using this type of concrete, e.g., in the prefabrication, where it is required to obtain high strength composites after short periods of their curing. In order to minimize these negative effects, research has been undertaken to increase the early strength of the concretes with FA through the application of a specially dedicated chemical nanoadmixture (NA) in the form of seeds of the C-S-H phase. Therefore, this paper presents results of tests of modified concretes both with the addition of FA and with NA. The analyses were carried out based on the results of the macroscopic and microstructural tests in 5 time periods, i.e. after: 4, 8, 12, 24 and 72 hours. The greatest increase in mechanical strength parameters and rapid development of the basic matrix phases in composites in the first 12 hours of composites curing was observed.

An Evaluation of Applicable Feature of Structural Member Using High Volume Fly-Ash Concrete (다량치환된 플라이애시 콘크리트의 구조부재 적용성 평가)

  • Kim, Gyung-Tae;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Recently, numerous studies were dedicated on the HVFA concrete using high volume CCPs. In initial studies, main topics are dependent on material properties of HVFA concrete, but several studies were dedicated on the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship and structural behavior nowadays. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 large-scale test members were manufactured with 7.5m span length and fly ash replacement ratio 50%, concrete compressive strength 50MPa in order to apply to the practical structure and evaluate possibility of application. From the test results, although there were small differences between test results and existing research results on the stress-strain relationship, the application to practical structure is not hard. In flexural test, as the produced pattern of displacement and strain were similar to those of general concrete without fly ash, the difference between 50% fly ash concrete and general concrete is very small. And the concrete shear strength obtained by test was similar to that of design code, so existing design code will be also able to apply.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.

The Study of Preparation of Block Using Wastewater Sludge of Petrochemical Factory (석유화학공장 폐수슬러지를 이용한 벽돌제조 연구)

  • Hu, Kwan;Lu, Juk-Yong;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To investigate the availability of solidified wastes as resource, wastewater sludge, waste gypsum and fly ash were mixed and the results with various mixing ratios are as follows. Compressive strength turned out to be increasing as the amount of waste gypsum increases, keeps longer curing inhibition, and higher forming Pressure under the conditions of waste gypsum/sludge ratio 0.31-0.45, and 0.9kg cement as 15% and 1.2kg cement as 20% of total amount. Solidified agent under the fly ash/sludge ratio 0.45, 0.6, compressive strength seemed to be higher than standard one which means solidified wastes with these conditions could be applicable in real life. These results inform that concentrations of the leachate $Cr^{+6}$, Cu, Zn, Cd, Pb solidified matrix, containing low concentration of heavy metal, were cured with/without enough time it still will cause adverse effect on nature environment and application of heavy metal sequester must be needed to reuse industrial wastes from incineration plant solidified matrix. Total cost price, when considering manufacturing capability of the facilities for resourcerizing as 18,000ton was presented 678,664,000 won, as it were, manufacturing cost price was 37,704 won per ton. The results as above has shown that it's possible to use the mixture of waste gypsum/sludge, fly ash/sludge, cement, additions, and solidification matter as substitute of materials like brick, block, interlocking which has proper compressive strength of KS L 5201 and KS F 4004.

  • PDF

A Study on the Properties & Application for High-Calcium Fly Ash (고칼슘 플라이애쉬의 특성 및 활용방안에 관한 연구)

  • Won, Cheol;Lee, Sang-Soo;Kwon, Yeong-Ho;Ahn, Jae-Hyen;Park, Chil-Lim
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.155-163
    • /
    • 1995
  • The primary purpose of this study is to hvestigate reusal techniques of high calclun-i fly ash in the construct.ion field, which may contribute to the savings of construction materials and consenratlng environment. Furt.hcrrnore, it can setup material properties or characteristics requiremi for development of new materials. Firstly, chemical and physical cahraci.eristics of liigh~calciurn fly ash is arialyseti. And then, the usability of the concrete is tcsted by investigating the flowablility and strength development through parameters of various replace ment r,itios with respect to different nuxing conditions. Finally, the durability and mechanical properties(e1astic nlodulus of the concrete is tested. As the result of the study, the following conclusions are derived : (1) the quaritii y of the CaO The primary purpose of this study is to hvestigate reusal techniques of high calclun-i fly ash in the co:lstruct.ion field, which may contribute to the savings of construction materials and consenratlng environment. Furt.hcrrnore, it can setup material properties or characteristics requiremi for development of new materials. Firstly, chemical and physical cahraci.eristics of liigh~calciurn fly ash is arialyseti. And then, the usability of the concrete is tcsted by investigating the flowablility and strength development through parameters of various replace ment r,itios with respect to different nuxing conditions. Finally, the durability and mechanical properties(e1astic nlodulus of the concrete is tested. As the result of the study, the following conclusions are derived : (1) the quaritii y of the CaO

Effects of Changes in Resuscitation Temperature and Curing Method on the Compressive Strength of the Large Volume Mortar of Fly Ash after Application of the Resuscitation Material (소생재 도포 후 소생온도 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.139-140
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of resuscitation after the re-application of mortar with much FA replacement on the degree of resuscitation. Results When NaOH was applied to the top of the mortar where 90% of FA was replaced, and maintained for 24 hours, the degree of resuscitation at $40^{\circ}C$ was completely improved. However, when medium curing was carried out, it showed a higher degree of compression than water or lapping curing at 10 MPa in 28 days. The degree of resuscitation on the 28th day was revived from around 10% of the normal level to about 20~30%, and it was analyzed that it was difficult to achieve the OPC reduction by any method.

  • PDF

A Study on the Estimation of Autogenous Shrinkage of High Strength Mortar incorporating Mineral Admixture by Equivalent Age Method (등가재령 방법에 의한 혼화재 치환 고강도 시멘트 모르타르의 자기수축 해석에 관한 연구)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • The objective of this study is to investigate an effect of curing temperature on autogenous shrinkage of high strength cement mortar with 0.15 of W/B incorporating fly ash and silica fume in terms of equivalent age. The contents of fly ash and silica fume are varied from 10% to 30%. Non linear regression model applying equivalent age was used to estimate the autogenous shrinkage evolution. To obtain apparent activation energy($E_a$), setting time method by Pinto and existing method were calculated and compared respectively. Test results showed that use of silica fume increased autogenous shrinkage while use of fly ash decreased it. It was also found that poor agreements were obtained when $E_a$ by setting time was applied. But, application of existing $E_a$ resulted in a good agreement between calculated autogenous shrinkage and measured one.

Compression Characteristics of Municipal Solid Waste Codisposed with Fly Ash (플라이애쉬(F/A)가 혼합된 도시 쓰레기(MSW)의 압축 특성)

  • Park, Hyun-Il;Lee, Seung-Rae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • If MSW(Municipal Solid Waste) landfill is used as a foundation ground of construction site, the change of loading condition may cause a large amount of compression in MSW landfill. Therefore, the reinforcement for the loose compression nature of MSW landfill would be very important design factor to geotechnical engineers in considering the end-use of the landfill. In this study, a possible technique for stabilizing MSW landfill with use of codisposal of municipal solid waste and Fly Ash is discussed. In order to estimate the stabilization of compression characteristic of codisposed landfill, large compression test and lysimeter test were performed. According to the test results, as the proportion of Fly Ash increases, the compression might be reduced, but the permeability might be also reduced. Therefore, it is necessary to take into account the both characteristics changes in real application.

  • PDF

Waste Reuse in Sugar Industries

  • Ansari, Abdul Khalique
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.122-131
    • /
    • 2001
  • Pakistan being the 6$^{th}$ largest sugar producer has over 75 sugar mills with annual production capacity of about 2.4 million tons during 1996-97. The contribution of Sindh with 27 sugar mills is recorded over 50% of the total sugar production. The majority of the mills in Pakistan use the Defecation-Remelt-Phosphitation (DRP; 24 mills), Defecation-Remelt-Carbonation (DRC; 21 mills) and Defecation-Remelt Carbonation and Sulphitation (DRCS; 11 mills) process. Seven of the 75 sugar mills in Pakistan also produce industrial alcohol from molasses, a by- product of sugar manufacturing process. These sugar industries also produce fly ash, which have been found to contain unburned carbon and reach as far as four-kilo meter area with the wind direction, threatening the community health of people living around, besides posing other aesthetic problems. The untreated wastewater, in many cases, finds its way to open surface drains causing serious threat to livestock, flora and fauna. One study showed that fly ash emitted from the chimneys contain particle size ranging from 38 ${\mu}{\textrm}{m}$ to 1000 ${\mu}{\textrm}{m}$. About 50 per cent of each fly ash samples were above 300 ${\mu}{\textrm}{m}$ in size and were mostly unburned Carbon particles, which produced 85% weight loss on burning in air atmosphere at 1000${\mu}{\textrm}{m}$. This fly ash (mostly carbon) was the main cause of many health and aesthetic problems in the sugar mill vicinity. The environmental challenge for the local sugar mills is associated with liquid waste gaseous emission and solid waste. This paper discusses various waste recycling technologies and practices in sugar industries of Pakistan. The application of EM technology and Biogas technology has proved very successful in reusing the sugar industry wastewater and mud, which otherwise were going waste.

  • PDF

Formation Mechanism of Low Density Ceramic Supporter with Fly Ash (석탄회를 이용한 저밀도 세라믹 담체의 제조 기구)

  • Hwang, Yeon;Lee, Hyo-Sook;Lee, Woo-Chul;Jeong, Yong-Dae;Lee, Won-Kwon
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2000
  • Low density ceramic supporter was prepared by using fly ash as a starting material for the application to the biological aerated filter system. Wheat powders were used to control the porosity of the supporter and the carbon content of the raw material. Apparent density of 1.6~1.8 g/$\textrm{cm}^3$ was obtained when the fly ash was sintered at $1200^{\circ}C$ in a weak reducing atmosphere. By maintaining the reducing atmosphere and sintering at a high heating rate, the liquid phase was formed from the reduced composition of fly ash. This resulted in the closed pore formation which enabled the low apparent density.

  • PDF