Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.4.543

Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase  

Golewski, Grzegorz Ludwik (Faculty of Civil Engineering and Architecture, Lublin University of Technology)
Szostak, Bartosz (Faculty of Civil Engineering and Architecture, Lublin University of Technology)
Publication Information
Structural Engineering and Mechanics / v.82, no.4, 2022 , pp. 543-556 More about this Journal
Abstract
Fly ash (FA) is the main additive to concretes currently produced. This substitute of ordinary Portland cement (OPC) have a positive effect on the structure and mechanical parameters of mature concrete. Unfortunately, the problem of using FA as the OPC replacement is that it significantly reduces the performance of concretes in the early stages of their curing. This limits the possibility of using this type of concrete, e.g., in the prefabrication, where it is required to obtain high strength composites after short periods of their curing. In order to minimize these negative effects, research has been undertaken to increase the early strength of the concretes with FA through the application of a specially dedicated chemical nanoadmixture (NA) in the form of seeds of the C-S-H phase. Therefore, this paper presents results of tests of modified concretes both with the addition of FA and with NA. The analyses were carried out based on the results of the macroscopic and microstructural tests in 5 time periods, i.e. after: 4, 8, 12, 24 and 72 hours. The greatest increase in mechanical strength parameters and rapid development of the basic matrix phases in composites in the first 12 hours of composites curing was observed.
Keywords
C-S-H phase (CSH); concrete; fly ash (FA); microstructure; nanoadmixture (NA); strength parameters;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Ju, M., Park, K., Lee, K., Yong Ahn, K. and Sim, J. (2019), "Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate", Struct. Eng. Mech., 69(4), 399-405. https://doi.org/10.12989/sem.2019.69.4.399.   DOI
2 Hebhoub, H., Belachia, M., Berdoudi, S. and Kherraf, L. (2018), "Incorporation of marble waste as sand in formulation of self-compacting concrete", Struct. Eng. Mech., 67(1), 87-91. https://doi.org/10.12989/sem.2018.67.1.087.   DOI
3 Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Sol. Mech, Appl., 154, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7.   DOI
4 Deng, S., Shu, Y., Li, S., Tian, G., Huang, J. and Zhang, F. (2016), "Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention", J. Hazard. Mater., 301, 400-406. https://doi.org/10.1016/j.jhazmat.2015.09.032.   DOI
5 Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.   DOI
6 Figala, P., Drochytka, R., Cerny, V. and Kolisko, J. (2018), "Structure of polymer-cement composite optimized with secondary raw materials", Mater. Struct. Tech., 1, 26-31. https://doi.org/10.31448/mstj.01.01.2018.26-31.   DOI
7 Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537.   DOI
8 Souza, M.T., Ferreira, I.M., Guzi de Moraes, E., Senff, L. and Novaes de Oliveira, A.P. (2020), "3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects", J. Build. Eng., 32, 101833. https://doi.org/10.1016/j.jobe.2020.101833.   DOI
9 Szostak, B. and Golewski, G.L. (2018), "Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash", IOP Conf. Ser. Mater. Sci. Eng., 416, 012105.   DOI
10 Szostak, B. and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous of fly ash by using nanometric C-S-H seeds", Energ., 13, 6734. https://doi.org/10.3390/en13246734.   DOI
11 Van der Putten, J., Deprez, M., Cnudde, V., de Schutter, G. and van Tittleboom, K. (2019), "Microstructural characterization of 3D printed cementitious materials", Mater., 12, 18. https://doi.org/10.3390/ma12182993.   DOI
12 Boudjellal, K., Bouabaz, M. and Belachia, M. (2016), "Mechanical characterization of a self-compacting polymer concrete called isobeton", Struct. Eng. Mech., 57(2), 357-367. https://doi.org/10.12989/sem.2016.57.2.357.   DOI
13 Toniolo, N., Bednarzig, V., Roether, J.A., Rost, H. and Boccaccini, A.R. (2019), "Advancing processing technologies for designed geopolymers: 3D printing and mechanical machining", Interceram-Int. Ceram. Rev., 68(1-2), 18-21. https://doi.org/10.1007/s42411-018-0059-3.   DOI
14 Ullah, S., Raheel, M., Khan, R. and Tariq Khan, M. (2021), "Characterization of physical & mechanical properties of asphalt concrete containing low-& high-density polyethylene waste as aggregates", Constr. Build. Mater., 301, 124127. https://doi.org/10.1016/j.conbuildmat.2021.124127.   DOI
15 Golewski, G.L. (2021d), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length-Using the crack tip tracking (CTT) method-In the fracture toughness examinations under Mode II, through digital image correlation", Constr. Build. Mater., 296, 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362.   DOI
16 Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Manage, 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.   DOI
17 Golewski, G.L. (2018d), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.   DOI
18 Golewski, G.L. (2018a), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser. Mater. Sci. Eng., 416, 012029.   DOI
19 Ahmadi, A., Reza Kianoush, M., Moslemi, M., Lachemi, M., Siad, H. and Booya, E. (2021), "Investigation on repair of tension cracks in reinforced concrete panels", Eng. Struct., 245, 112974. https://doi.org/10.1016/j.engstruct.2021.112974.   DOI
20 Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement Wapno Beton, 2, 106-114.
21 Zhang, B., Zhu, H. and Liu, F. (2021a), "Fracture properties of slag-based alkali-activated seawater coral aggregate concrete", Theor. Appl. Fract. Mech., 115, 103071. https://doi.org/10.1016/j.tafmec.2021.103071.   DOI
22 Wei, Y., Chai, J., Qin, Y., Li, Y., Xu, Z., Li, Y. and Ma, Y. (2021), "Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry-wet cycle attack", Constr. Build. Mater., 302, 124207. https://doi.org/10.1016/j.conbuildmat.2021.124207.   DOI
23 Wyrzykowski, M., Assmann, A., Hesse, C. and Laura, P. (2020), "Microstructure development and autogenous shrinkage of mortars with C-S-H seeding and internal curing", Cement Concrete Res., 129, 105967. https://doi.org/10.1016/j.cemconres.2019.105967.   DOI
24 Yang, J.M. and Kim, J.K. (2019), "Development and application of a hybrid prestressed segmental concrete grider utilizing low carbon materials", Struct. Eng. Mech., 69(4), 371-381. https://doi.org/10.12989/sem.2019.69.4.371.   DOI
25 Haeri, H., Sarfarazi, V., Zhu, Z., Nohekhan Hokmabadi, N., Moshrefifar, M.R. and Hedayat, A. (2019), "Shear behawior of non-persistent joints in concreto and gypsum specimens using combined experimental and numerical approaches", Struct. Eng. Mech., 69(2), 221-230. https://doi.org/10.12989/sem.2019.69.2.221.   DOI
26 Golewski, G.L. and Gil, D.M. (2021), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Mater., 14, 319. https://doi.org/10.3390/ma14020319.   DOI
27 Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Solid Stat. Phenom.,188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158.   DOI
28 Golewski, G.L. and Szostak, B. (2021b), "Application of the C-S-H phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry", Mater., 14, 6514. https://doi.org/10.3390/ma14216514.   DOI
29 Golewski, G.L. (2019b), "A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads", Compos. Struct., 223, 110939. https://doi.org/10.1016/j.compstruct.2019.110939.   DOI
30 Golewski, G.L. (2019e), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Proc. Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82.   DOI
31 Haeri, H. and Sarfarazi V. (2016), "Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)", Comput. Concrete, 18(1), 039-051. https://doi.org/10.12989/cac.2016.18.1.039.   DOI
32 Hwang, S.D., Khatib, R., Lee, H.K., Lee, S.H. and Khayat, K.H. (2012), "Optimization of steam-curing regime for high- strength self-consolidating concrete for precast, prestressed concrete applications", PCJ J., 57(3), 48-62.
33 Ha, T.M., Ura, S., Fukada, S. and Torii, K. (2019), "Development and application of a highly durable precast prestressed concrete slab deck using fly ash concrete", Struct. Infrastr. Eng., 16(9), 1228-1246. https://doi.org/10.1080/15732479.2019.1696377.   DOI
34 Haeri, H. (2015), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881.   DOI
35 Gosselin, C. Duballet, R., Roux, Ph., Gaudilliere, N., Dirrenberger, J. and Morel, Ph. (2016), "Large-scale 3D printing of ultra-high performance concrete-A new processing route for architects and builders", Mater. Des., 100, 102-109. https://doi.org/10.1016/j.matdes.2016.03.097.   DOI
36 Rahimireskati, S., Ghabraie, K., Garcez, E.O. and Al-Ameri, R. (2021), "Improving sorptivity and electrical resistivity of concrete utilizing biomedical polymeric waste sourced from dialysis treatment", Int. J. Sus. Eng., 14(3), 1-15. https://doi.org/10.1080/19397038.2021.1941393.   DOI
37 Kaur, I. and Singh, K. (2021a), "Fractional order strain analysis in thick circular plate subjected to hyperbolic two temperature", Part. Different. Eqs. Appl. Math., 4, 100130. https://doi.org/10.1016/j.padiff.2021.100130.   DOI
38 Golewski, G.L. (2017c), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Characterization of fly ash microstructure", Mater., 10, 1393. https://doi.org/10.3390/ma10121393.   DOI
39 Khaji, Z. and Fakoor, M. (2021), "Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials", Theor. Appl. Fract. Mech., 113, 102962. https://doi.org/10.1016/j.tafmec.2021.102962.   DOI
40 Dragas, J., Tosic, N., Ignatovic, S. and Marinkovic, S. (2016), "Mechanical and time-dependent properties of high-volume fly ash concrete for structural use", Mag. Concrete Res., 68, 632-645. https://doi.org/10.1680/jmacr.15.00384.   DOI
41 Szostak, B. and Golewski, G.L. (2021), "Rheology of cement pastes with siliceous of fly ash and the C-S-H nano-admixture", Mater., 14, 3640. https://doi.org/10.3390/ma14133640.   DOI
42 Golewski, G.L. (2020c), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Mater. Today Procs., 45, 4344-4348. https://doi.org/10.1016/j.matpr.2021.01.031.   DOI
43 Kosior-Kazberuk, M. and Lelusz, M. (2007), "Strength development of concrete with fly ash addition", J. Civil Eng. Manage., 13(2), 115-122.   DOI
44 Szczesniak, A., Zychowicz, J. and Stolarski, A. (2020), "Influence of fly ash additive on the properties of concrete with slag cement", Mater., 13, 3265. https://doi.org/10.3390/ma13153265.   DOI
45 Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.   DOI
46 Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.   DOI
47 Belviso, C. (2018), "State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues", Prog. Energy Combus. Sci., 65, 109-135. https://doi.org/10.1016/j.pecs.2017.10.004.   DOI
48 Craciun, E.M. (2016), "Prestressed orthotropic material containing and elliptical hole", Adv. Struct. Mater., 60, 327-336. https://doi.org/10.1007/978-981-10-0959-4_18.   DOI
49 Craciun, E.M. and Soos, E. (2006), "Anti-plane states in an anisotropic elastic body containing an elliptical hole", Math. Mech. Solid., 11(5), 459-466. https://doi.org/10.1177/1081286505044138.   DOI
50 Fakoor, M. and Ghoreishi, S.M.N. (2019), "Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates", Acta. Mech., 230(1), 225-241. https://doi.org/10.1007/s00707-018-2313-1.   DOI
51 Zhang, P., Ji-Xiang, G., Xiao-Bing, D., Tian-Hang, Z. and Juan, W. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.   DOI
52 Zhang, D., Ge, Y., Dai Pang, S. and Liu, P. (2021b), "The effect of fly ash content on flexural performance and fiber failure mechanism of lightweight deflection-hardening cementitious composites", Constr. Build. Mater., 302, 124349. https://doi.org/10.1016/j.conbuildmat.2021.124349.   DOI
53 Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006.   DOI
54 Zhang, P., Han, S., Golewski, G.L. and Wang, X. (2020), "Nnoparticle-reinforced building materials with applications in civil engineering", Adv. Mech. Eng., 12, 1-4. https://doi.org/10.1177/1687814020965438.   DOI
55 Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021c), "Effect of nano silica particles on impact resistance and durability concrete containing coal fly ash", Nanomater., 11(5), 1296. https://doi.org/10.3390/nano11051296.   DOI
56 Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021d), "Statistical analysis of three-point-bending fracture failure of mortar", Constr. Build. Mater., 300, 123883. https://doi.org/10.1016/j.conbuildmat.2021.123883.   DOI
57 Zheng, S., Qi, L., He, R., Wu, J. and Wang, Z. (2021), "Erosion damage and expansion evolution of interfacial transition zone concrete under dry-wet cycles and sulfate erosion", Constr. Build. Mater., 307, 124954. https://doi.org/10.1016/j.conbuildmat.2021.124954.   DOI
58 Lata, P. and Kaur, I. (2019a), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.   DOI
59 Kaur, I. and Singh, K. (2021b), "Plane wave in non-local semiconducting rotating media with hall effect and three-phase lag fractional order heat transfer", Int. J. Mech. Mater. Eng., 16(1), 14. https://doi.org/10.1186/s40712-021-00137-3.   DOI
60 Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings-sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563.   DOI
61 Golewski, G.L. (2019c), "Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems", Constr. Build. Mater., 213, 142-155. https://doi.org/10.1016/j.conbuildmat.2019.04.071.   DOI
62 Golewski, G.L. (2021a), "Green concrete based on quaternary binders with significant reduced of CO2 emissions", Energ., 14, 4558. https://doi.org/10.3390/en14154558.   DOI
63 Golewski, G.L. and Szostak, B. (2021a), "Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators", Constr. Build. Mater., 312, 125426. https://doi.org/10.1016/j.conbuildmat.2021.125426.   DOI
64 Berto, F., Ayatollahi M. and Marsavina, L. (2017), "Mixed mode fracture", Theor. Appl. Fract. Mech., 91, 1.   DOI
65 Bicer, A. (2021), "The effect of fly ash and pine tree resin on thermo-mechanical properties of concretes with expanded clay aggregates", Case Stud. Constr. Mater., 15, e00624. https://doi.org/10.1016/j.cscm.2021.e00624.   DOI
66 Golewski, G.L. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.   DOI
67 Golewski, G.L. (2019d), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measure., 135, 96-105. https://doi.org/10.1016/j.measurement.2018.11.032.   DOI
68 Golewski, G.L. (2019f), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.   DOI
69 Golewski, G.L. (2020a), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Mater., 13, 5241. https://doi.org/10.3390/ma13225241.   DOI
70 Zou, F., Hu, F., Wang, Y., Rua, Y. and Hu, S. (2020b), "Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a grrner binder", J. Clean. Prod., 244, 118566. https://doi.org/10.1016/j.jclepro.2019.118566.   DOI
71 Kaur, I., Lata, P. and Singh, K. (2020), "Effect of memory dependent derivative isotropic thermoelastic cantilever nano-beam with two temperature", Appl. Math. Model., 88, 83-105. https://doi.org/10.1016/j.apm.2020.06.045.   DOI
72 Lata, P. and Kaur, I. (2019b), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without Energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.   DOI
73 Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.   DOI
74 Li, M., Wang, Q. and Yang, Y. (2017), "Influence of steam curing method on the performance of concrete containing a large portion of mineral admixtures", Adv. Mater. Sci. Eng., 2017, 9863219. https://doi.org/10.1155/2017/9863219.   DOI
75 Liang, J.F., Zhang, L.F., Yang, Y.H. and Wei, L. (2021), "Flexural behavior of partially prefabricated partially encased composite beams", Steel. Compos. Struct., 38(6), 705-716. https://doi.org/10.12989/scs.2021.38.6.705.   DOI
76 Liu, G., Bai, E., Xu, J., Wang, T. and Chang, S. (2019), "Research status and development prospects of 3D printing concrete materials", IOP Conf. Ser. Earth Environ. Sci., 267, 032014.   DOI
77 Marin, M., Craciun, E.M. and Pop, N. (2020), "Some results in green-lindsay thermoelasticity of bodies with dipolar structure", Math., 8(4), 497. https://doi.org/10.3390/math8040497.   DOI
78 Mehdizadeh, M., Maghshenas, A., Khosnari, M.M. (2021), "On the effect of internal friction on torsional and axial cyclic loading", Int. J. Fatigue, 145, 106113. https://doi.org/10.1016/j.ijfatigue.2020.106113.   DOI
79 Golewski, G.L. (2021b), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measure., 181, 109632. https://doi.org/10.1016/j.measurement.2021.109632.   DOI
80 Golewski, G.L. (2020b), "Energy savings associated with the use of fly ash and nanoadditives in the cement composition", Energ., 13, 2184. https://doi.org/10.3390/en13092184.   DOI
81 Golewski, G.L. (2021c), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energ., 14, 668. https://doi.org/10.3390/en14030668.   DOI
82 Abolhasani, A., Nazarpour, H. and Dehestani, M. (2021), "Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete", Eng. Fract. Mech., 242, 107446. https://doi.org/10.1016/j.engfracmech.2020.107446.   DOI
83 Fakoor, M. and Shahsavar S. (2021), "The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory", Int. J. Solid. Struct., 229, 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145.   DOI
84 Fakoor, M. and Shokrollahi, M.S. (2018), "A new micro-mechanical approach for investigation damage zone effects on mixed mode I/II fracture orthotropic materials", Acta Mechanica, 229(8), 3537-3556.   DOI
85 Fakoor, M., Sabour, M.H. and Khansari, N.M. (2014), "A new approach for investigation of damage zone properties orthotropic materials", Eng. Solid Mech., 992(4), 283-292.
86 Alghazali, H.H., Aljazaeri, Z.R. and Myers, J.J. (2020), "Effect of accelerated curing regimes on high volume fly ash mixtures in precast manufacturing plants", Cement Concrete Res., 131, 105913. https://doi.org/10.1016/j.cemconres.2019.105913.   DOI
87 Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Alabuduljabbar, H., Ostrowski, K.A., Sliwa-Wieczorek, K., Nowobilski, T. and Malazdrewicz S. (2021), "Study for the prediction of the compressive strength of self-compacting concrete modified with fly ash", Mater., 14, 4934.   DOI
88 Miraldo, S., Lopes, S., Pacheco-Torgal, F. and Lopes, A. (2021), "Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes", Constr. Build. Mater., 298, 123729. https://doi.org/10.1016/j.conbuildmat.2021.123729.   DOI
89 Mousavi, S.R., Afshoon, I., Bayatpour, M.A., Davarpanah, A. and Mahmoud Miri, T.Q. (2021), "Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen", Constr. Build. Mater., 282, 122711. https://doi.org/10.1016/j.conbuildmat.2021.122711.   DOI
90 Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech., 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008.   DOI
91 Gil, D.M. and Golewski, G.L. (2018a), "Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in mode I", IOP Conf. Ser. Mater. Sci. Eng., 416, 012065.   DOI
92 Gil, D.M. and Golewski, G.L. (2018b), "Potential of siliceous fly ash and silica fume as a substitute of binder in cementitious concretes", E3S Web Conf., 49, 00030. https://doi.org/10.1051/e3sconf/20184900030.   DOI
93 Golewski, G. L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.   DOI
94 Golewski, G.L. (2017d), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.   DOI
95 Golewski, G.L. (2018b), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.   DOI
96 Chajec, A. (2021), "Granite powder vs. fly ash for the sustainable production of air-cured cementitious mortars", Mater., 14, 1208. https://doi.org/10.3390/ma14051208.   DOI
97 Antonovic, V., Pundiene, I., Stpnys, R., Cesniene, J. and Kariene, J. (2010), "A review of the possible applications of nanotechnology in refractory concrete", J. Civil Eng. Manage., 16, 595-602. https://doi.org/10.3846/jcem.2010.66.   DOI
98 Barnat-Hunek, D., Grzegorczyk-Franczak, M., Klimek, B., Pavlikova, M. and Pavlik, Z. (2021), "Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry", Constr. Build. Mater., 278, 122366. https://doi.org/10.1016/j.conbuildmat.2021.122366.   DOI
99 Beddu, S., Ahmad, M., Mohamad, D., bin Noruul Ameen, M.I., Itam, Z., Mohd Kamal, N.L. and Nadiah Barsi, N.A. (2020), "Utilization of fly ash cenosphere to study mechanical and therm properties of lightweight concrete", AIMS Mater. Sci., 7(6), 911-925.   DOI
100 Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nanosilica-, silica fume- and fly ash-incorporated cement mortars", Mater. Res., 17, 570-582. http://doi.org/10.1590/S1516-14392014005000054.   DOI
101 Park, S., Beak, J., Kim, K. and Park, Y.J. (2021), "Study on reduction effect of vibration propagation due to internal explosion using composite materials", Int. J. Concrete Struct. Mater., 15, 30. https://doi.org/10.1186/s40069-021-00467-8.   DOI
102 Owens K., Russell, M.I., Donnelly, G., Kirk, A. and Basheer, P.A.M. (2014), "Use of nanocrystals seedeing chemical admixture in improving Portland cement strength development: Application for precast concrete industry", Adv. Appl. Ceram., 113(8), 478-484. https://doi.org/10.1179/1743676114Y.0000000176.   DOI
103 Pacheco-Torgal, F. (2017), "High tech startup creation for Energy efficient built environment", Renew. Sustain. Energy Rev., 71, 618-629. https://doi.org/10.1016/j.rser.2016.12.088.   DOI
104 Papadakis, V.G. (1999), "Effect of fly ash of Portland cement systems. Part I. Low-calcium fly ash", Cement Concrete Res., 29, 1727-1736. https://doi.org/10.1016/S0008-8846(99)00153-2.   DOI
105 Raheel, M., Rahman, F. and Ali, Q. (2020), "A stoichiometric approach to find optimum amount of fly ash needed in cement concrete", SN Appl. Sci., 2, 1100. https://doi.org/10.1007/s42452-020-2913-y.   DOI
106 Rahmani, E., Sharbatdar, M.K. and Beygi, M.H.A. (2021), "Influence of cement contents on the fracture parameters of Roller compacted concrete pavement (RCCP)", Constr. Build. Mater., 289, 123159. https://doi.org/10.1016/j.conbuildmat.2021.123159.   DOI
107 Ramezanianpour, A.A., Khazali, M.H. and Vosoughi P. (2013), "Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete", Constr. Build. Mater., 49, 807-813. https://doi.org/10.1016/j.conbuildmat.2013.08.040.   DOI
108 Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel. Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.   DOI
109 Golewski, G.L. (2018e), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016.   DOI
110 Golewski, G.L. (2018c), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090.   DOI
111 Smirnova, O. (2020), "Low-clinker cements with low water demand", J. Mater. Civil Eng., 32(7), 06020008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003241.   DOI
112 Chen, M., Li, L., Zheng, Y., Zhao, P., Lu, L. and Cheng, X. (2017), "Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials", Constr. Build. Mater., 189, 601-611. https://doi.org/10.1016/j.conbuildmat.2018.09.037.   DOI
113 Fakoor, M. and Manafi Farid, H. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mechanica, 230 (1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.   DOI
114 Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta Mechanica, 231(12), 5105-5124. https://doi.org/10.1007/s00707-020-02810-8.   DOI
115 Siddique, R. (2003), "Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete", Cement Concrete Res., 33, 539-547. https://doi.org/10.1016/S0008-8846(02)01000-1.   DOI
116 Singh, A., Das, S., Altenbah, H. and Craciun, E.-M. (2020), "Semi-infinite moving crack in an orthotropic strip sandwiched between two identical half planes", ZAMM, 100(2), e201900202. https://doi.org/10.1002/zamm.201900202.   DOI
117 Smirnova, O., Kazanskaya, L., Koplik, J., Tan, H. and Gu, X. (2021a), "Concrete based on clinker-free cement: Selecting the functional unit for environmental assessment", Sustain., 13, 135. https://doi.org/10.3390/su13010135.   DOI
118 Smirnova, O., Menendez Pidal de Navascues, I., Mikhailevskii, V.R., Kolosov, O.I. and Skolota, N.S. (2021b), "Sound-absorbing composites with rubber crumb from used tires", Appl. Sci., 11, 7347. https://doi.org/10.3390/app11167347.   DOI
119 Yazici, H., Aydin, S., Yigiter, H. and Baradan, B. (2005), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 35, 1122-1127. https://doi.org/10.1016/S0008-8846(97)00269-X.   DOI
120 Tee, K.F. and Mostofizadeh, S. (2021), "Numerical and experimental investigation of concrete with various dosage of fly ash", AIMS Mater. Sci., 8(4), 587-607.   DOI
121 Zou, F., Shen, K. Hu, C., Wang, F., Yang, L. and Hu, S. (2020a), "Effect of sodium sulfate and C-S-H seeds on the reaction of fly ash with different amorphous alumina contents", ACS Sustain. Chem. Eng., 8, 1659-1670. https://doi.org/10.1021/acssuschemeng.9b06779.   DOI
122 Ikponmwosa, E.E., Ehikhuenmen, S.O. and Irene, K.K. (2019), "Comparative study and empirical mobelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete", Acta Polytech., 59(6), 560-572.   DOI
123 Chen, Y.G., Guan, L.L., Zhu, A.Y. and Chen, W.J. (2021), "Foamed concrete containing fly ash: Properties and application to backfilling", Constr. Build. Mater., 273, 121685. https://doi.org/10.1016/j.conbuildmat.2020.121685.   DOI
124 Chinnu, S.N., Minnu, S.N., Bahurudeen, A. and Senthilkumar, R. (2021), "Recycling of industrial and agricultural wastes as alternative coarse aggregates: A step towards cleaner production of concrete", Constr. Build. Mater., 287, 123056. https://doi.org/10.1016/j.conbuildmat.2021.123056.   DOI
125 Congro, M., Roehl, D. and Mejia, C. (2021), "Mesoscale computational modeling of the mechanical behawior of cement composite materials", Compos. Struct., 257, 113137. https://doi.org/10.1016/j.compstruct.2020.113137.   DOI
126 Singh, A., Das, S. and Craciun, E.M. (2019), "Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip", Mech. Compos. Mater., 55(3), 285-296. https://doi.org/10.1007/s11029-019-09812-1.   DOI
127 Golewski, G.L. (2022), "The specificity of shaping and execution of monolithic pocket foundations (PF) in hall buildings", Build., 12, 192. https://doi.org/10.3390/buildings12020192.   DOI
128 Min, T.B., Cho, I.S., Park, W.J., Choi, H.K. and Lee, H.S. (2014), "Experimental study on the development of compressive strength of early concrete age using calcium-based hardening accelerator and high early strength cement", Constr. Build. Mater., 64, 208-214. https://doi.org/10.1016/j.conbuildmat.2014.04.053.   DOI
129 Telesca, A., Marroccoli, M., Calabrese, D., Valenti, G.L. and Montagnaro, F. (2013), "Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials", Waste Manage., 33, 628-633. https://doi.org/10.1016/j.wasman.2012.10.022.   DOI
130 Hemalatha, T. and Sasmal, S. (2019), "Early-age strength development in fly ash blended cement composites: investigation through chemical activation", Mag. Concrete Res., 71(5), 260-270. https://doi.org/10.1680/jmacr.17.00336.   DOI
131 Ji, G., Peng, X., Wang, S., Hu, C., Ran, P., Sun, K. and Zeng, L. (2021), "Influence of magnesium slag as a mineral admixture on the performance of concrete", Constr. Build. Mater., 295, 123619. https://doi.org/10.1016/j.conbuildmat.2021.123619.   DOI