• Title/Summary/Keyword: Fly as

Search Result 2,012, Processing Time 0.025 seconds

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Effects of microorganism density and mushroom yields according to the sterilization of casing soils at the cultivation of button mushrooms (복토살균 조건에 따른 양송이 재배과정별 복토내 미생물 밀도 및 수량 특성)

  • Lee, Chan-Jung;Yoo, Young-Mi;Jhune, Chang-Sung;Cheong, Jong-Chun;Moon, Ji-Won;Kong, Won-Sik;Suh, Jang-Sun;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • This study was conducted to set the proper sterilization standards of casing soil for the stable production of button mushroom(Agaricus bisporus) from mushroom disease that occurs in infection of casing soil material. Changes of aerobic bacteria are increased as the longer grow-out period and sharply increased after second flushes. Fluorescence Psuedomonas showed high density at high sterilization temperature and $100^{\circ}C$ treatment has extremely high density at 30 min and 60 min in casing 22 days. Density of thermophilic actinomyces is sharply increase from casing with soil and the highest density at 22 days of casing and rapidly decrease after first flushes. Sterilizing temperature of casing soil affects quality and quantity of button mushroom. Treatment of 60 min, 90 min at $80^{\circ}C$ and 30 min at $100^{\circ}C$ produced the highest mushroom yields, especially mushrooms yields of A grads were the highest at treatment of 90 min at $80^{\circ}C$. Treatment of 60min at $100^{\circ}C$ products many yields, however, this treatment has low economic feasibility for its yields. Sterilizing temperature of casing soil has an effect on generating diseases and insect pests. Treatment of 60 min, 90 min at $80^{\circ}C$ and 30 min $100^{\circ}C$ showed lower incidence than the other treatment. Although treatment of 30 min at $100^{\circ}C$ causes low diseases and mushroom fly damage, it has low mushroom yields. Furthermore, although treatment of 60 min at $100^{\circ}C$ has high mushroom yields, it causes high diseases and mushroom fly damage. Therefore the best conditions for the sterilization of casing soils was 60 min and 90 min at $80^{\circ}C$.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

The Clinical Study on the Visual Acuity and Cornea of ez-NANOsence II RGP Contact Lens (ez NANOsence II RGP 콘택트렌즈의 시력과 각막에 미치는 임상적 연구)

  • Kim, Douk-Hoon;Bae, Han-Young;Han, Mung-Gyo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.55-69
    • /
    • 2007
  • The purpose of this study was to perform a clinical test using ez NANOsence II RGP contact lenses for the effects of visual acuity and cornea on subjects with abnormal refraction status. One hundred twenty one adults (twenty nine males, ninety two females, range = 17 to 43, mean = 22.86) were recorded. The subject's history including, the symptoms from previous lens wear, were studied. The subjects were observed, both pre and post lens wear, for any symptoms and signs of change of the eye. The Visual acuity and the binocular status were tested at the far distance using the contact lens. The refraction test was performed on the naked eye using the objective method (Topcon KR-8100, Japan). The Stereopsis test was performed at the near distance after contact lens wear by the Titmus fly (Stereo Optical Co., U.S.A) and TNO (TECH, The netherlands). The contrast sensitivity diagnosis was performed at 1m distance after contact lens wear by the contrast sensitivity chart (pelli-Robertson, USA). The corneal topography was analyzed on the naked eye after lens wear by ORB scan (Bausch Lomb, U.S.A.). The ultra structure of surface on the contact lens was observed using SEM (JMS-5800, Japan). The chemical component's of the contact lens was analyzed by EDS program. The results of this study were as follows: 1. The longer of contact lens wear period, The subjects have acquired the most improved visual function. 2. Subjects had experienced few side effects wearing the contact lenses. 3. The lenses were easy to use by the subjects. 4. The longer of contact lens wear period, the power of cornea had more decrease. but the base curve of cornea had more increase and corneal astigmatism was decrease (p<0.01). Also, the thickness of corneal center was few decrease. 5. Longer periods of using the contact lens showed stereopsis and contrast sensitivity at more normal values. 6 The corneal topographical after lens wear showed most subjects with similar morphology for different wear periods. 7. The surface ultrastructure of the new and used contact lens was the similar fine shape. 8. The chemical component's of in the new and used contact appeared to have similar results. In conclusion, this study showed that the surface ultrastructure and chemical component's of the new and used contact lens are similar. In addition, the subjects had improved the quality of vision and few experienced any side effects during long periods of contact lens wear. Also they have decrease of corneal astigmatism during the long period of lens wear. Our test has showed that the chemical composition and fine structure of contact lens have related to the visual function on contact lens wearer. In this paper, we suggested that ez NANOsence II RGP contact lenses had a moderate effect for correcting vision of abnormal refraction eye.

  • PDF

A Comparison Study of Aerosol Samplers for PM10 Mass Concentration Measurement (PM10 질량농도 측정을 위한 시료채취기의 비교 연구)

  • Park, Ju-Myon;Koo, Ja-Kon;Jeong, Tae-Young;Kwon, Dong-Myung;Yoo, Jong-Ik;Seo, Yong-Chil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A PM10 (aerodynamic diameter${\leq}$10 ${\mu}m$) sampler is used to quantify the potential human exposure to suspended particulate matter (PM) and to comply with the governmental regulation. This study was conducted to compare and evaluate the same PM10 cutpoint and different slopes between United States Environmental Protection Agency (USEPA) PM10 sampling criterion and American Conference of Governmental Industrial Hygienists/$Comit\acute{e}$ $Europ\acute{e}en$ de Normalization/International Organization for Standardization thoracic PM10 sampling criterion through theory and experiment. Four PM10 samplers according to the USEPA criterion and one RespiCon sampler in accordance with the thoracic PM10 criterion were used in the present study. In addition, one DustTrak monitor was used to measure real time PM10 mass concentrations. All six aerosol samplers were tested in a PM generation chamber using polydisperse fly ash. Theoretical mass concentrations were calculated by applying the measured particle size distribution characteristics (geometric mean = 6.6 ${\mu}m$, geometric standard deviation = 1.9) of fly ash to each sampling criterion. The measured mass concentrations through a chamber experiment were consistent with theoretical mass concentrations in that a RespiCon sampler with the thoracic PM10 criterion collected less PM than a PM10 sampler with the USEPA criterion. The overall chamber experiment results indicated, when a PM10 sampler was used as a reference sampler, that (1) a RespiCon sampler had a normalizing factor of 1.6, meaning that this sampler underestimated an average 60% of PM10 mass sampled from a PM10 sampler, and (2) a DustTrak real-time monitor using a PM10 inlet had a calibration factor of 2.1.

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

Studies on the Changes of Taste Compounds during Soy Paste Fermentation (III) (된장 숙성 중 정미 성분의 변화에 관한 연구(III))

  • 김미정;이혜수
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.261-265
    • /
    • 1993
  • For the purpose of supplying the information to improve the acceptability of soy paste as the condi-ment, the changes of peptide were determined. The results were as follows; Average peptide length were decreased. It was 102 at 0 day, 15 at 10 day and 4.1 at 180 day. Peptide fraction were the same as in 60 day and 180 day. Low molecular weight peptide were not changed greatly during fermention. Peptide identified in 180 day fermentation were Ala-Ser, Gly-Glu, Glu-Ser, Asp-Glu, Asp- Tyr, Asp-Ala-Ser, Ala-Ser-Glu, Glu-Ser-Ala, and Ala-Lys-Met. In the characteristics of bitter peptide in 180 day fermentation, soy paste itself didn't show bitter taste', solvent extration fraction I'showed bitter taste. After gel chromatography, fraction I, fraction II and fraction III were obtained and fraction II were bitter peptide of low molecular weight. After gel chromatography', solvent extration fraction 2'(water extration) were divided into fraction IV, V, VI,VII and VIII. Fraction IV, V and VI showed bitter taste. Amino acids composition of the fractions showing bitter taste were like that; fr. 1: Glu- (Asp, Pro, Val, lie or Leu)-Met fr. II Pro-(Glu, Val, Phe)-lle or Leu fr. IV: Glu-(Asp, Ala, Tyr, Leu of lie)-Phe fr. V: Ala-(Met, Glu, Pro)-lle or Leu fr. VI: Asp-(Phe, Ser, fly)-Val.

  • PDF

Decision of Optimized Mix Design for Lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure (통계적 방법에 의한 바텀애쉬를 사용한 경량기포 콘크리트의 최적배합 결정)

  • Kim, Jin-Man;Kwak, Eun-Gu;Cho, Sung-Hyun;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • The increased demand and consumption of coal has intensified problems associated with disposal of solid waste generated in utilization of coal. Major utilization of coal by-products has been in construction-related applications. Since fly ash accounts for the part of the production of utility waste, the majority of scientific investigations have focused on its utilization in a multitude of use, while little attention has been directed to the use of bottom ash. As a consequence of this neglect, a large amount of bottom ash has been stockpiled. However, the need to obtain safe and economical solution for its proper utilization has been more urgent. The study presented herein is designed to ascertain the performance characteristics of bottom ash, as autoclaved lightweight foamed concrete product. The laboratory test results indicated that tobermorite was generated when bottom ash was used as materials for hydro-thermal reaction. According to the analysis of variance, at the fresh state, water ratio affects on flow and slurry density of autoclaved lightweight foamed concrete, but foam ratio influences on slurry density, while, at the hardened state, foam ratio affects on the density of dry and the compressive strength but doesn't affect on flexural and tensile strength. In the results of response surface analysis, to obtain target performance, the most suitable mix condition for lightweight foamed concrete using bottom ash was water ratio of 70$\sim$80% and foaming ratio of 90$\sim$100%.

Estimation of Flowability and Strength in Controlled Low Strength Material Using Multiple Regression Analysis (다중회귀분석을 이용한 CLSM의 유동성 및 강도 특성 예측)

  • Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.65-75
    • /
    • 2017
  • Flowability and strength with curing time of controlled low-strength material (CLSM) are required differently according to the construction purpose. In this paper, the flowability and strength were estimated from the mixing ratio of CLSM using multiple regression analysis to design the CLSM. The flow values and strength at 12 hrs and 7days were measured in accordance with the mixing ratio of CLSM which consists of 7 different materials, such as CSA expansive agent, ordinary Portland cement, fly ash, sand, silt, water, and accelerator. The multiple regression was performed with the proportions of each material of CLSM as independent variables and the measured properties as dependent variables using SPSS Statistics 23 which is a statistical analysis program. The regression coefficients were estimated from the first to third order equation models for the materials. From the results, the third order model for the flow values and the first order models for 12hrs and 7days strength are the most appropriate models. This study suggests that the mixing ratio required for constructions may be effectively estimated from the regression models about the characteristics of CLSM, before performing experimental tests.

Engineering Characteristics of CLSM with Regard to the Particle Size of Bottom Ash (저회의 입도변화에 따른 CLSM의 공학적특성)

  • Lee, Yongsoo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.5-10
    • /
    • 2020
  • As the demand for the recycling of industrial by-products increases due to various environmental restrictions including the prohibition of ocean disposal, various studies regarding the recycling of industrial by-products are currently being carried out. One of the industrial by-product, coal ash is produced from thermal power generation; studies on the recycling of fly ash have been actively carried out and it is currently recycled in various fields. In the case of bottom ash, however, only a portion of the total amount generated is primarily processed into a particle size of 2~4mm or less than 2mm to be used for gardening purpose and light weight aggregate and so on. The remaining amount is buried at ash disposal sites. Therefore, various studies are needed to develop measures to use bottom ash. This study aimed at identifying the optimal particle size and mixing ratio of bottom ash to be used as CLSM aggregate. To this end, it evaluated the usability of bottom ash as CLSM aggregate, by investigating the flowability and strength change characteristics of CLSM produced with regard to the mixing ratio of weathered granite soil and bottom ash, particle size of bottom ash to be mixed and soil binder addition rate and conducting a heavy metal leaching test.