• Title/Summary/Keyword: Flux-switching

Search Result 204, Processing Time 0.026 seconds

A New Direct Torque Control Method of Induction Motor for Torque Ripple Reduction

  • Kim, Deok-Ki;Kim, Jong-Su;Kim, Sung-Hwan;Kim, Hyun-Soo;Kim, Won-Ouk;Yoon, Kyoung-Kuk;Oh, Sae-Gin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1061-1067
    • /
    • 2008
  • Direct Torque Control[DTC] and Vector Control are the two schemes developed for high performance induction motor drives. DTC based induction motors are being increasingly used in various industrial applications. DTC offers fast torque response and better speed control with lesser hardware and processing costs as compared to vector controlled drives. However, conventional DTC suffers from high torque ripple, current harmonics and low performance during torque transients. In this paper a new Direct Torque Control[DTC] method of induction motor is presented. In comparison with the conventional DTC method, the PWM technique is applied to proposed control method. In this method, decoupling mechanism is not required and the torque, the flux magnitude are under control using PI controllers and generating the voltage command for inverter control. Therefore torque and speed ripple could be reduced in comparison with the conventional switching table DTC.

Voltage Control of a Synchronous Generator for Ship using a Compound Type Digital AVR (혼합형 디지털 자동 전압 조정 장치를 이용한 선박용 동기발전기의 출력전압제어)

  • Park, Sang-Hoon;Lee, Sang-Seuk;Yu, Jae-Sung;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.397-403
    • /
    • 2009
  • In this paper, an exciter current control of a synchronous generator for ships using a compound type digital automatic voltage regulator (DVAR) in order to provide a constant output voltage of the generator is presented. The compound type DAVR is composed of a controller part to adjust output voltage and an power source unit to supply power to the exciter. The controller part, which generates the PWM switching pattern via the PI controller, drives a power MOSFET for bypass to limit the SG's exciter current. The power source unit part is parallel connected to an output terminal of the generator through a reactor and a power CT. The residual magnetic flux of SG provides exciter current to the exciter through the reactor during the initial running or no load state and load current supplies field current to the exciter through the power CT during loading state. This paper confirmed an experiment to verify the validity of compound type DAVR system for controlling output voltage of synchronous generator.

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

Torque Ripple Reduction of Interior Permanent-Magnet Synchronous Motors Driven by Torque Predictive Control (토크예측제어를 이용한 매입형 영구자석 동기전동기의 토크리플저감기법)

  • Kim, Hyunseob;Han, Jungho;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.102-109
    • /
    • 2013
  • In this paper, a new torque predictive control method of interior permanent magnet synchronous motor is developed based on an extended rotor flux. Also, a duty ratio prediction method is proposed and allows the duty ratio of the active stator voltage vector to be continuously calculated. The proposed method makes it possible to relatively reduce the torque ripple under the steady state as well as to remain the good dynamic response in the transient state. With the duty ratio prediction method, the magnitude and time interval of the active stator voltage vector applied can be continuously controlled against the varying operation conditions. This paper shows a comparative study among the switching table direct torque control(DTC), the SVM-DTC, conventional torque predictive control, and the proposed torque predictive control. Simulation results show validity and effectiveness of this work.

Development of Superconductive Arithmetic and Logic Devices (초전도 논리연산자의 개발)

  • Kang J. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Due to the very fast switching speed of Josephson junctions, superconductive digital circuit has been a very good candidate fur future electronic devices. High-speed and Low-power microprocessor can be developed with Josephson junctions. As a part of an effort to develop superconductive microprocessor, we have designed an RSFQ 4-bit ALU (Arithmetic Logic Unit) in a pipelined structure. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The RSFQ 1-bit block of ALU used in this work consisted of three DC current driven SFQ switches and a half-adder. We successfully tested the half adder cell at clock frequency up to 20 GHz. The switches were commutating output ports of the half adder to produce AND, OR, XOR, or ADD functions. For a high-speed test, we attached switches at the input ports to control the high-speed input data by low-frequency pattern generators. The output in this measurement was an eye-diagram. Using this setup, 1-bit block of ALU was successfully tested up to 40 GHz. An RSFQ 4-bit ALU was fabricated and tested. The circuit worked at 5 GHz. The circuit size of the 4-bit ALU was 3 mm ${\times}$ 1.5 mm, fitting in a 5 mm ${\times}$ 5 mm chip.

  • PDF

A Study On Parameter Compensation Scheme in Vector Controlled Induction Motor Drive (벡터제어 유도전동기 구동의 파라메터 보상에 대한 연구)

  • Park, Min-Ho;Kim, Young-Real;Won, Chung-Yuen;Kim, Tae-Hoon;Kim, Yuen-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.20-24
    • /
    • 1989
  • The time optimal position control scheme can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible at the industrial drives. In this case, the machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance value changes dramatically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual variables of the induction motor drive, and this situation leads to decoupling of the vector controller from the plant, i.e the induction motor. Consequences of such decoupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque of the induction motor servo drive. Therefore, a rotor resistance parameter compensating method for the induction motor is described.

  • PDF

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.

Sensorless Control of PM BLDC Motor Drive Using Third Harmonic (3고조파를 이용한 PM BLDC 전동기 구동을 위한 센서리스 제어)

  • Yoon Yong-Ho;Kim Yuen-Chung;Won Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.323-330
    • /
    • 2005
  • In order to increase reliability and reduce system cost, this paper studies particularly applicable method for sensorless PM BLDCM drive system. The waveform of the motor internal voltages(or back emf) contains a fundamental and higher order frequency harmonics. Therefore the third harmonic component is extracted from the stator phase voltage. The resulting third harmonic signal keeps a constant phase relationship with the rotor flux for any motor speed and load condition, and is practically free of noise that can be introduced by the inverter switching, making this a robust sensing method. In addition, a simple starting method and a speed estimation approach are also proposed. Some experimental results are Provided to demonstrate the validity of the proposed control method.

Electrical Characteristics of Antenna for Electrodeless Fluorescent Lamp Using the Electromagnetic Simulation (무전극 형광램프용 안테나 설계를 위한 전기적 특성 시뮬레이션)

  • Her, In-Sung;Kim, Kwang-Soo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.61-64
    • /
    • 2004
  • Recently, the RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the electrodeless fluorescent lamps utilizing an inductively coupled plasma (ICP) have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. The electrodeless fluorescent lamp that is dealt with in this work comprises a bulb filled with rare gas and amalgam of vaporizable metal and has a coil provided with a winding around the ferrite. Current through a coil produces a magnetic field in the discharge space. The changing magnetic flux then produces an azimuthal electric field E around the coil, according to Faraday's laws of magnetic induction.

  • PDF

Electrical Characteristics of Antenna for Electrodeless Fluorescent Lamp Using the Electromagnetic Simulation (무전극 형광램프용 안테나 설계를 위한 전기적 특성 시뮬레이션)

  • Her, In-Sung;Kim, Kwqang-Soo;Choi, Yong-Sung;Lee, Chong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.285-288
    • /
    • 2004
  • Recently, the RF inductive discharge or inductively coupled plasma(ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the electrodeless fluorescent lamps utilizing an inductively coupled plasma(ICP) have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. The electrodeless fluorescent lamp that is dealt with in this work comprises a bulb filled with rare gas and amalgam of vaporizable metal and has a coil provided with a winding around the ferrite. Current through a coil produces a magnetic field in the discharge space The changing magnetic flux then produces an azimuthal electric field E around the coil, according to Faraday's laws of magnetic induction.

  • PDF