• Title/Summary/Keyword: Flux-lock SFCL

Search Result 97, Processing Time 0.026 seconds

Analysis on Fault Current limiting and Recovery Characteristics of Flux-Lock Type Superconducting Fault Current Limiter According to Increase of Applied Voltage (전압증가에 따른 자속구속형 초전도 한류기의 전류제한 및 회복특성 분석)

  • Oh, Kum-Gon;Han, Tae-Hee;Cho, Yong-Sun;Cho, Hyo-Sang;Choi, Myoung-Ho;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.107-112
    • /
    • 2007
  • The flux-lock type SFCL consists of transformer with primary and secondary windings connected to a superconducting element in serial. It can be divided into the subtractive and the additive polarity windings according to the winding direction. It could change the fault current limiting characteristics according to the inductance ratio between the coil 1 and coil 2. We investigated the voltage-current characteristics of the flux-lock type SFCL according to the increment of applied voltage. When the applied voltage of the SFCL with the subtractive and the additive polarity windings was increased a initial limiting current ($I_{ini}$) and the quench time of the superconducting element were increased. The recovery time of the superconducting element was increased by increment of applied voltage. Therefore, it was confirmed that recovery characteristics in the flux-lock type SFCL were largely dependent on the consumed energy of a superconducting element because of increment of the consumption power into the superconducting element.

Quench Characteristics of Flux-lock Type SFCL in Subtractive Polarity Winding (감극 결선시 자속구속형 전류제한기의 퀜치 특성)

  • Hwang, Jong-Sun;Han, Tae-Hee;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Guong-Hyun;Lee, Na-Young;Lim, Sung-Hun;Chung, Dong-Chul;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.251-252
    • /
    • 2006
  • As one of methods to increase the voltage rating of the flux-lock type SFCL, the fault current limiting characteristics of the flux-lock type SFCL with HTSC elements connected in series were analyzed. The initial fault current amplitudes in two SFCLs with the series connection of two HTSC elements and with single HTSC element were the same. In addition, the resistance amplitude of each HTSC element in SFCL with the series connection of two HTSC elements had the similar one in SFCL with single HTSC element. With increase of applying voltage, the unbalance of voltage between two HTSC elements in SFCL with the series connection of two HTSC elements disappeared.

  • PDF

Current Limiting Characteristics of a Flux-lock type SFCL with Secondary Windings Connected to the Superconducting elements in parallel (초전도 소자 병렬 연결에 따른 자속구속형 한류기의 전류제한 특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Jung, Soo-Bok;Lim, Sung-Hun;Choi, Myong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.229-230
    • /
    • 2007
  • We investigated the quench characteristics of a superconducting element, two superconducting elements in order to increase the current capacity of flux lock type SFCL. The flux-lock type SFCL consisted of the transformer with a primary winding and a secondary winding connected in parallel, and the superconducting element was connected with secondary winding in series. The applied voltage at that time was 160 ${\sqrt{3}}$. We found that the parallel connection between the superconducting elements increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

Analysis for Variation of Limiting Current at Initial Fault Time in Flux-Lock Type SFCL (자속구속형 고온초전도 전류제한기의 사고초기 제한 전류변화 분석)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Gang, Hyeong-Gon;Ko, Seok-Cheol;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.418-420
    • /
    • 2003
  • The fault current limiting characteristics at the initial fault time for flux-lock type high-Tc superconducting fault current limiter(SFCL) were investigated. The amplitude of initial fault current of the flux-lock type SFCL was dependent on the inductance ratio of coil 1 and 2. After fault current limiting mode was analyzed, we compared the calculated value with the experimental one for the initial fault current. The effect of initial fault current due to the inductance ratio of coil 1 and 2 on fault current limiting characteristics was discussed.

  • PDF

Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel (2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Han, Tea-Hee;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

Current Limiting Characteristics of a SFCL with Two Triggered Current Limiting Levels in a Simulated Power Distribution System (모의배전계통에 두 트리거 전류레벨을 이용한 초전도한류기의 전류제한 특성 분석)

  • Ko, Seok-Cheol;Han, Tae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • When the accident occurred in power distribution system, it needs to control efficiently the fault current according to the fault angle and location. The flux-lock type superconducting fault current limiters (SFCL) can quickly limit when the short circuit accidents occurred and be made the resistance after the fault current. The flux-lock type SFCL has a single triggering element, detects and limits the fault current at the same time regardless of the size of the fault current. However, it has a disadvantage that broken the superconductor element. If the flux-lock type SFCL has separated structure of the triggering element and the limiting element, when large fault current occurs, it can reduce the burden of power and control fault current to adjust impedance. In this paper, this system is composed by triggering element and limiting element to analyze operation of limiting current. When the fault current occurs, we analyzed the limiting and operating current characteristics of the two triggering current level, and the compensation characteristics of bus-voltage sag according to the fault angle and location.

Current Limiting Characteristic of Flux-Lock Type High-Tc Superconducting Fault Current Limiter (자속 구속형 고온초전도 전류제한기의 전류제한 특성)

  • Park Hyung Min;Choi Hyo Sang;Lim Sung Hun;park Chung Ryul;Han Byung Sung;Lee Sang Il;Chung Soo Bok;Oh Geum Kon;Hyun Ok Bae;Chung Dong Chul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.633-635
    • /
    • 2004
  • The current limiting characteristics of the flux-lock type superconducting fault current limiters(SFCLs) were investigated. The flux-lock type SFCL consists of a flux-lock reactor and high-T_c superconducting (HTSC) element. In this SFCL the initial limiting current level can be controlled by adjusting the inductances of two coils. In this paper, the operational characteristics of the flux-lock type SPCL were analyzed and the current Limiting characteristics of it were investigated through the experiments.

  • PDF

Current Limiting Characteristics of Flux-lock Type Superconducting Fault Current Limiter Using YBCO Films by Serial and Parallel Combinations (자속구속형 한류기의 직병렬조합에 따른 전류제한특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Lee, Ju-Hyoung;Jung, Byung-Ik;Choi, Hyo-Sang;Choi, Myong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.87-88
    • /
    • 2007
  • We investigated the current limiting characteristics of flux-lock type superconducting fault current limiter using YBCO films University, Gwangju health college. The flux-lock type SFCL consisted of the transformer with a primary winding and a secondary winding connected in parallel, and the superconducting element was connected with secondary winding in series or parallel. Serial and parallel connections of superconducting elements are necessary for the increase of voltage and current capacities when we intend to apply the flux-lock type SFCL.

  • PDF

Improvement of Simultaneous Quench Characteristic of Flux-Lock Type Superconducting Fault Current Limiters Through Its Series Connection (자속구속형 초전도 사고전류 제한기의 직렬연결을 통한 동시 퀜치 특성 향상)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.102-106
    • /
    • 2007
  • To apply the flux-lock type superconducting fault current limiter(SFCL) into power system, its current and voltage ratings are required to increase. Especially, in case of series connection of SFCLs, the countermeasure for simultaneous quenches must be considered. The structure, which each flux-lock type SFCL unit was wound in series on the same iron core, can induce the simultaneous quench of superconducting elements. Through the fault current limiting experiment for the suggested structure, it was confirmed that the even voltage burden among the superconducting elements comprising SFCLs could be made.

Operational Characteristics of a Flux-Lock Type SFCL Integrated with Voltage-Controlled Voltage Source Inverter

  • Lee, Su-Won;Lim, Sung-Hun;Ko, Sung-Hun;Lee, Seong-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.546-551
    • /
    • 2008
  • In this paper, a flux-lock type superconducting fault current limiter(SFCL) integrated with a voltage-controlled voltage source inverter(VC-VSI) is proposed. The suggested equipment, which consists of a flux-lock type SFCL and a VCVSI, can perform the fault current limiting operation from the occurrence of a short-circuit. In addition, it can compensate the reactive power that the non-linear load requires and also perform the uninterruptible power supply(UPS) as well as the load voltage stabilization by controlling the amplitude and the phase of the inverter's output voltage. The specification for a test model was determined and its various functions such as the fault current limiting and the power conditioning operations were presented and analyzed via computer simulation. Through the analytical results based on the computer simulation, the validity of the analysis was confirmed and its multi-operation was discussed.