• Title/Summary/Keyword: Flux-Flow

Search Result 1,677, Processing Time 0.028 seconds

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

Flow and smoke behavior of a longitudinal ventilation tunnel with various velocities using computational fluid dynamics (팬의 운전조건에 따른 종류식환기터널 내의 연기거동에 관한 전산유체역학연구)

  • Lee, J.H.;Kwon, Y.J.;Kim, D.E.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.105-115
    • /
    • 2014
  • A numerical analysis on the smoke behavior and evacuee safety has been performed with computational fluid dynamics. The purpose of this study is to build computational processes for an evacuation and prevention of a fire disaster of a 3 km-length tunnel in Korea. To save computational cost, 1.5 km of the tunnel that can include a few cross-passing tunnels is considered. We are going to assess the fire safety in a road tunnel according to the smoke level, which consists of the smoke density and the height from the floor. The smoke density is obtained in detail from three-dimensional unsteady CFD analysis. To obtain proper temperature distributions on the tunnel wall, one-dimensional conduction equation is considered instead of an adiabatic wall boundary or a constant heat flux. The tunnel considered in this study equips the cross passing tunnels for evacuees every 250 m. The distance is critical in both safety and economy. The more cross passing tunnels, the more safe but the more expensive. Three different jet fan operations can be considered in this study; under- and over-critical velocities for normal traffic condition and 0-velocoty operation for the traffic congestion. The SE (smoke environment) level maps show a smoke environment and an evacuating behavior every moment.

Numerical Comparisons of Flow Properties Between Indivisual and Comprehensive Consideration of River Inundation and Inland Flooding (하천범람과 내수침수의 개별적·복합적 고려에 따른 흐름 특성의 수치적 비교)

  • Choi, Sang Do;Eum, Tae Soo;Shin, Eun Taek;Song, Chang Geun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.115-122
    • /
    • 2020
  • Due to the climate change, torrential rain downpours unprecedentedly, and urban areas repeatedly suffer from the inundation damages, which cause miserable loss of property and life by flooding. Two major reasons of urban flooding are river inundation and inland submergence. However, most of previous studies ignored the comprehensive mechanism of those two factors, and showed discrepancy and inadequacy due to the linear summation of each analysis result. In this study, river inundation and inland flooding were analyzed at the same time. Petrov-stabilizing scheme was adopted to capture the shock wave accurately by which river inundation can be modularized. In addition, flux-blocking alrotithm was introduced to handle the wet and dry phenomena. Sink/source terms with EGR (Exponentially Growth Rate) concept were incorporated to the shallow water equations to consider inland flooding. Comprehensive simulation implementing inland flooding and river inundation at the same time produced satisfactory results because it can reflect the counterbalancing and superposition effects, which provided accurate prediction in flooding analysis.

Seasonal Variation and Transport Pattern of Suspended Matters in semiclosed Muan Bay, Southwestern Coast of Korea (반폐쇄된 무안만에서 부유물질의 계절적 변동 및 운반양상)

  • Ryu, Sang-Ock;Kim, Joo-Young;You, Hoan-Su
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.128-136
    • /
    • 2000
  • To understand the variation and transport pattern of suspended matters, salinity, tidal current and suspended matters in semiclosed Muan Bay have been monitored during winter and summer. The suspended matters show considerably seasonal variations with low concentration and homogeneity in the water column during winter season, but with high concentration and layering during summer season. Particularly, during summer season, the freshwater and the suspended matters influxed by the gate operation of the Youngsan River sea-dike are transported northward in accordance with the would flow into the inner-bay by relaxed flood currents after the construction of sea-dike and sea-walls in the Mokpo coastal zone. But, in the south bay-mouth, those matters outflow through the bay-mouth, resulting from tidal ebb dominance and asymmetry in the west bay-mouth. The residual suspended matter flux is much higher in the south bay-mouth(-0.0955kg/m ${\cdot}$ sec) than that of west bay-mouth(0.0078kg1m ${\cdot}$ sec). Accordingly, The Muan Bay is interpreted as erosion-dominated environments, and the erosion somewhat progresses in the intertidal flat of the bay.

  • PDF

Numerical Simulation of Water Uptake of Soybean Field (대두포장(大豆圃場)에서 수분흡수(水分吸收)에 관(關)한 수치해석학적(數値解析學的) 모형(模型))

  • Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 1981
  • A mathematical model based on the water flow equation was developed with the Ohm's analogy and the partial differential equations. Simulation of water uptake was performed by numerically solving the equations with the aid of a differential equation solver, DGEAR in IMSL package, in FORTRAN version. The input data necessary were climatological parameters (temperature, solar radiation, humidity and wind speed). plant parametors (leaf water potential, leaf area, root conductivity and root length density) and soil parameters (hydraulic conductivity and The graphical comparison of the simulated and measured water contents as the functions of time showed good agreement, but there still was some disparity due to possible inacouracy of the field measured parameters. The simulated soil evaporation showed about 2 mm/day early in the growing period and dropped to about 0.4 mm/day as the full canopy developed and the soil water depleted. During the dry period, soil evaporation was as low as 0.1 mm/day. The transpiration was as high as 5mm/day. Deep percolation calculated from the flux between the 180-cm layer was about 0.2mm/day and became smaller with time. After the soil water of upper layers depleted, the flux reversed showing capillary rise. The rate of the capillary rise reached about 0.07mm/day, which was too low to satisfy water uptake of the root system. Therefore, to increase use of water in deep soil, expansion of the root system is necessary.

  • PDF

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application (친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용)

  • Yu, Yun Ah;Kim, Jin-joo;Kang, Hyo;Lee, Jong-Chan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.510-518
    • /
    • 2016
  • Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Preparation and Characterization of Cellulosic Forward Osmosis Membranes (셀룰로오스 계 고분자를 이용한 정삼투막의 제조 및 특성)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.222-227
    • /
    • 2010
  • The purpose of this study is to prepare forward osmosis (FO) membranes using a variety of cellulose-based polymers and to evaluate the performance of difference depending on each of the polymers and additives. Forward osmosis membranes based on cellulose acetate (CA) and cellulose triacetate (CTA) were prepared through phase inversion. The performance of FO membranes developed, such as flux and salt rejection, was compared under the osmotically- and pressure-driven conditions. In CA FO membranes, the execution time of solvent evaporation and membrane annealing induced the change in membrane performance. But the performance of CTA FO membrane was improved by using additives rather than annealing. Moreover, the flux of CTA FO membrane was $4.46\;L/m^2hr$ but that of CA/CTA FO membrane was $8.89\;L/m^2hr$ in FO mode. The CTA FO membrane with blending CA was more efficient to increase FO permeate flow rather than using a single polymer membrane.

Cordycepin Induced Apoptosis via Intracellular Ca2+ Modulation and Mitochondrial Dysfunction in Human Prostate Cancer PC-3 Cells (전립선암 세포주인 PC-3에서 cordycepin에 의해 유도된 세포 내 칼슘농도 변화와 미토콘드리아 기능 상실을 통한 세포사멸 유도)

  • Kang, Dong-Min;Kim, Kwang-Youn;Yu, Sun-Nyoung;Jin, Young-Rang;Jeon, Hyun-Joo;Kim, Sang-Hun;Chun, Sung-Sik;Ko, Hack-Ryong;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.451-458
    • /
    • 2011
  • Cordycepin (3'-deoxyadenosine), a nucleoside derivative isolated from Cordyceps militaris, is reported to have antitumor effects. However, neither its molecular mechanism nor its molecular targets are well understood. In the present study, molecular mechanisms for the anti-tumor effects of cordycepin were investigated in human prostate cancer PC-3 cells. The MTT assay was used to detect cell viability. Annexin V/FITC assay, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and $Ca^{2+}$ flux were used to assess for the presence of apoptosis. Western blot analysis was used to detect protein expression. Treatment of cordycepin resulted in significantly decreased cell viability of PC-3 cells in a dose- and time-dependent manner. A dose-dependent apoptotic cell death was also measured by flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in significant mitochondrial dysfunction, ROS production, and elevation of $Ca^{2+}$ concentrations. These phenomena were followed activation of caspase-3, subsequently leading to PARP cleavage and cell apoptosis. Taken together, cordycepin induces apoptosis in PC-3 cells through regulation of a mitochondrial mediated pathway.