• Title/Summary/Keyword: Flux-Flow

Search Result 1,680, Processing Time 0.031 seconds

A Study of the Thermal Analysis of Horizontal Fillet Joints by Considering the Bead Shape in GMA Welding (GMA 용접에서 비드형상을 고려한 수평필릿용접부의 온도해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.71-78
    • /
    • 2001
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

Net Ecosystem Productivity Determined by Continuous Measurement Using Automatic Sliding Canopy Chamber

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1179-1186
    • /
    • 2012
  • For better understanding of carbon cycle dynamics of an agro-ecosystem, an accurate assessment of seasonal and daily $CO_2$ flux is essential to understand the relationship between various environmental factors and crop productivity. We developed the automatic sliding canopy chamber (ASCC) system that measured continuous net ecosystem productivity (NEP) over whole growing season under the natural meteorological rhythm. The ASCC was composed of two main parts which were sliding part for measuring NEP, and automatic opening and closing chamber (AOCC) for measuring soil respiration (SR) on the soil surface. The ASCC was developed by using open flow method for measuring soil $CO_2$ efflux. The disturbance of natural meteorological condition was minimized by opening the base frames. In the field test with barley (Hordeum vulgare L.), NEP was calculated at $140mg\;CO_2\;m^{-2}h^{-1}$ on a clear day using continuous data and eliminated the possibility of overestimate about 16% using one hour data during the day time. Unlike other small scale chamber system, installation on cropping-field made it possible to take any modifications which might be caused by natural environmental condition.

Electromagnetic Model to Estimate the Vibrations of a Switched Reluctance Machine on the Basis of the Eelctric Power Supply

  • Badreddine, Benabdallah Mohammed
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • The vibrations and noise origin in electric material is due to several coupled physical phenomena. The revolving electric machine complete modeling is complex; it does not allow simple parametric machine structure studies for various operation modes. This work presents a simple electromagnetic model which makes possible the machine principal parts flow estimation from flux density. Special interest is given in determining Switched Reluctance Machine (S.R.M) radial acceleration in accordance with the current supply. Our focus will be only on the magnetic origin efforts that are dominating in the S.R.M. The efforts calculation versus the current is presented in the case of a machine with a linearized rate. These efforts are considered as a tangential force producing the torque and a radial force that generates no torque. The application is realized on a 6/4 low power S.R.M type (6 stator teeth and 4 teeth rotor). The mechanical response is substituted in a transfer function. The model takes account of the power supply of the machine, the relation between the current supply and the efforts as well as the vibratory response of the machine to these efforts. Finally, the model is validated by comparison with similar experimental results within the framework of the definite assumptions.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Development of Transdermal Drug Delivery System for the Combination of Physostigmine and Procyclidine

  • Park, Soon-Cheol;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.181-184
    • /
    • 2001
  • The purpose of this study was to develop transdermal drug delivery system (TDDS) for the combination of physostigmine and procyclidine. The effects of various pressure sensitive adhesives (PSA) on the percutaneous absorption of procyclidine across hairless mouse skin were evaluated to select an appropriate PSA. In addition, the influences of various vehicles on the percutaneous absorption of procyclidine from PSA matrix across hairless mouse skin were evaluated using flow-through diffusion cell system at $37^{\circ}C$. Physostigmine did not have any influence on the permeation rate of procyclidine. The flux of procyclidine was the highest in silicone and PIB and was relatively lower in SIS, Acryl, and SBS adhesive matrices, however, their use was limited by the crystallization of the drug in the matrix. Among acrylic adhesives, the permeability of procyclidine was the highest from poly (ethylene oxide) grafted acrylic adhesive. Some enhancers show different enhancing effect depending on the drug, however, many of the tested enhancers showed enhancing effect for the permeation of both procyclidine and physostigmine to some extent. $Crovol^{\circledR}$ EP 40 showed the highest enhancing effect on the permeation of both compounds. The size of TDDS to provide required permeation rate was estimated to be $35\;cm^2$ based on available information.

  • PDF

Accurate and Robust Computations of Gas-Liquid Two-Phase Flows Part 1: Development of Shock-Stable Two-Phase Schemes (액체-기체 2상 유동장의 정확하고 강건한 해석 Part 1: 충격파 안정적인 2상 유동 수치기법의 개발)

  • Ihm, Seung-Won;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 2009
  • In this paper, we introduce two-phase versions of RoeM and AUSMPW+ schemes. Both schemes are originally developed for the gas dynamic problems, and have shown superior accuracy, efficiency and robustness. A new shock discontinuity sensing term is derived from the mixture equation of state, which is commonly used in the RoeM and AUSMPW+ schemes for the stable numerical flux calculation. The developed two-phase versions of the schemes are applied to several liquid-gas, large property discrepancy two-phase test problems, including several shock stability test problems. The results show that both schemes maintain the merits exhibited in gas dynamic problems even in two-phase flows.

A STUDY ON THERMAL ANALYSIS OF HORIZONTAL FILLET JOINTS BY CONSIDERING BEAD SHAPE IN GMA WELDING

  • Cho, Si-Hoon;Kim, Jae-Woong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.151-155
    • /
    • 2002
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol;Lee, Yong-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.327-330
    • /
    • 2006
  • Numerical study on the passive control of the oblique shock wave/turbulent boundary-layer interaction control utilizing slotted plates over a cavity has been carried out. Numerical results have been compared with the experimental observations, such as pitot/wall surface pressures and Schlieren flow visualizations, obtained for the same boundary conditions. It was found that the present numerical results shows a good agreement with experimental data. Further, the effect of different slot configurations including various number, location and angle of slots on the characteristics of the interactions are also tested, focusing on the variation of the piot pressure and the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through cavity.

  • PDF