• Title/Summary/Keyword: Flux sapphire

Search Result 14, Processing Time 0.028 seconds

A Monochromatic Soft X-ray Generation from Femtosecond Laser-produced Plasma with Aluminum

  • Son, Joon-Gon;Hwang, Byung-Jun;Seo, Okkyun;Kim, Jae Myung;Noh, Do Young;Ko, Do-Kyeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1834-1839
    • /
    • 2018
  • A tabletop ultrafast soft x-ray has been generated from the laser-produce plasma with a femtosecond pulsed Ti:Sapphire laser. The estimated total flux of Al $K{\alpha}$ is of $2.2{\times}10^9photons/sec$ in $4{\pi}$ radian and the parameters related to the optical performance were obtained. The tungsten/silicon multilayer, flat quartz and bent thallium acid phthalate (TLAP) crystal were used for monochromatization of soft x-ray to refine the aluminum $K{\alpha}$ radiation and compared the respective value of $E/{\Delta}E$. To estimate the size of the x-ray source beam generated by a fs laser, the approximation using the FWHM obtained from the x-ray beam scan near the focal point was discussed, and the size of the diameter was about $9.76{\mu}m$.

Coherent X-ray Diffraction Imaging with Single-pulse Table-top Soft X-ray Laser

  • Kang, Hyon-Chol;Kim, H.T.;Lee, S.K.;Kim, C.M.;Choi, I.W.;Yu, T.J.;Sung, J.H.;Hafz, N.;Jeong, T.M.;Kang, S.W.;Jin, Y.Y.;Noh, Y.C.;Ko, D.K.;Kim, S.S.;Marathe, S.;Kim, S.N.;Kim, C.;Noh, D.Y.;Lee, J.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.429-430
    • /
    • 2008
  • We demonstrate coherent x-ray diffraction imaging using table-top x-ray laser at a wavelength of 13.9nm driven by 10-Hz ti:Sapphire laser system at the Advanced Photonics Research Institute in Korea. Since the flux of x-ray photons reaches as high as $10^9$ photons/pulse in a $20{\times}20{\mu}m^2$ field of view, we measured a ingle-pulse diffraction pattern of a micrometer-scale object with high dynamic range of diffraction intensities and successfully reconstructed to the image using phase retrieval algorithm with an oversampling ratio of 1:6. the imaging resolution is $^{\sim}150$ nm, while that is much improved by stacking the many diffraction patterns. This demonstration can be extended to the biological sample with the diffraction limited resolution.

  • PDF

A Mineralogical and Gemological Studies for the Enhancement of Tanzania Ruby by Heat Treatment (탄자니아산 루비의 열처리에 의한 보석·광물학적 품질개선 연구)

  • Kim, Seon-Ok;Wang, Sookyun;Oh, Sul-Mi;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.563-569
    • /
    • 2014
  • Ruby is one of the most favor colored gem, for beautiful red tone, be high in scarcity value. However, rubies with high quality are produced in restricted regions, such as in Thailand, Sri Lanka, Myanmar, and Tanzania etc., and they have been gradually exhausted by mining for a long period. Therefore, improving qualities of low level rubies with various treatments is arising an alternative way to obtain better rubies. Gemological and mineralogical properties of the natural ruby from Tanzanian were studied with heat treatments. Those characteristics were compared between only heat and adding flux materials under heating. Tanzanian raw rubies were applied a heat treatment ($1,600^{\circ}C$ for 6 hours). However, chromameter and UV-Vis analyses found that a simple heat treatment is inappropriated for the Tanzanian ruby. Although $Cr^{3+}$ containing for red color in the ruby increased with heat treatment, the ruby displays dark medium red because of Fe in the ruby as a form of $Fe_2O_3$. The low transparency after heat treatment is attributed to the recrystallization of $SiO_2$ which has a low melting point. Chromameter confirmed adding Pb-containing flux under heating greatly improves the clarity and color of Tanzanian rubies with micro-fractures and cavities on the surface. EMPA results show that Pb as an additive fills the cavities and cracks on raw Tanzanian rubies during the heat treatment. As a rewult of it, the quality of the Tanzanian ruby raw dramatically improved. These results indicate that the heat treatment with an additive (Pb in this study) is an effective way to obtain better quality of the Tanzanian ruby. Consequently, this study suggests a suitable method to improve the properties of the Tanzanina ruby. The result of this study would provide useful information to upgrade the qualities of similar gem stones such as corundum and sapphire.

Structural Characterization of Bismuth Zinc Oxide Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법으로 성장한 산화비스무스아연 박막의 구조특성)

  • Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Cho, Hyung-Koun;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.563-567
    • /
    • 2011
  • We report the structural characterization of $Bi_xZn_{1-x}O$ thin films grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. By increasing the Bi flux during the growth process, $Bi_xZn_{1-x}O$ thin films with various Bi contents (x = 0~13.17 atomic %) were prepared. X-ray diffraction (XRD) measurements revealed the formation of Bi-oxide phase in (Bi)ZnO after increasing the Bi content. However, it was impossible to determine whether the formed Bi-oxide phase was the monoclinic structure ${\alpha}-Bi_2O_3$ or the tetragonal structure ${\beta}-Bi_2O_3$ by means of XRD ${\theta}-2{\theta}$ measurements, as the observed diffraction peaks of the $2{\theta}$ value at ~28 were very close to reflection of the (012) plane for the monoclinic structure ${\alpha}-Bi_2O_3$ at 28.064 and the reflection of the (201) plane for the tetragonal structure ${\beta}-Bi_2O_3$ at 27.946. By means of transmission electron microscopy (TEM) using a diffraction pattern analysis and a high-resolution lattice image, it was finally determined as the monoclinic structure ${\alpha}-Bi_2O_3$ phase. To investigate the distribution of the Bi and Bi-oxide phases in BiZnO films, elemental mapping using energy dispersive spectroscopy equipped with TEM was performed. Considering both the XRD and the elemental mapping results, it was concluded that hexagonal-structure wurtzite $Bi_xZn_{1-x}O$ thin films were grown at a low Bi content (x = ~2.37 atomic %) without the formation of ${\alpha}-Bi_2O_3$. However, the increased Bi content (x = 4.63~13.17 atomic %) resulted in the formation of the ${\alpha}-Bi_2O_3$ phase in the wurtzite (Bi)ZnO matrix.