• Title/Summary/Keyword: Flux matrix

Search Result 157, Processing Time 0.025 seconds

Fault Tolerant Control of Homopolar Magnetic Bearings Using Flux Isolation (자속 분리법을 이용한 동극형 자기베어링의 고장강건 제어)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1102-1111
    • /
    • 2007
  • The theory for a fault-tolerant control of homopolar magnetic bearings is developed. New coil winding law is utilized such that control fluxes are isolated for an 8-pole homopolar magnetic bearing. Decoupling chokes are not required for the fault tolerant magnetic bearing since C-core fluxes are isolated. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events while currents and fluxes change significantly.

A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in gelatin matrix and its thermally actuated permeation of 4-acetamidophen

  • Chun, Suk-Won;Kim, Jong-Duk
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.50-51
    • /
    • 1995
  • The swelling behavior of hyddrogels has been interested in many applications of drug carriers. These gels show reversible swelling changes in response to pH, electric currcnt, and temperature. Among others, the temperature-responsive behavior of poly(N-isopropylacrylanxide) (p(NIPAAm)) was studied, because a lower critical solution temperature(LCST) is in the vicinity of 32$\circ$C, and remarkable temperature-response can be obtained. We propose a novel composite membrane, which is appropriate for transporting drug ingredients above the transition temperature. Our object was to design a high permeation system above the shrinking temperature of p(NIPAAm). The membrane was composed of a matrix polymer and thermosensitive p(NIPAAm) hydrogel. The flux pattern of 4-acctamidophen through membrane in response of temperature was opposite to that of p(NIPAAm) membrane.

  • PDF

A Generalized Model for Homogenized Reflectors

  • Pogosbekyan, Leonid;Kim, Yeong-Il;Kim, Young-Jin;Joo, Hyung-Kook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.40-45
    • /
    • 1996
  • A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the celt interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K.Koebke and K.Smith. The method of K.Smith can be simulated within framework of new method, while the new method approximates heterogeneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K.Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO2/MOX core simulation, The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in- core conditions.

  • PDF

Piezoelectric and acoustic properties of piezoceramic/polymer 1-3 composites (압전 세라믹/Polymer 1-3 Composites의 압전 및 음향 특성)

  • Choi, H.I.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.727-729
    • /
    • 1992
  • In this study, the piezoelectric composites with 1-3 connectivity have been studied. A piezoelectric ceramics PZT prepared by Flux method is used as a filler in a epoxy Eccogel polymer matrix. The piezoelectric coefficients were increased as PZT volume% increases, and resonance frequency was moved to lower frequency as the sample thickness increased. The acoustic matching impedance with water is lowered than single phase PZT ceramics.

  • PDF

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

Toward a Relativistic Magnetohydrodynamic Code

  • Jang, Han-Byul;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • Building a relativistic magnetohydrodynamic (RMHD) codes based on upwind schemes is a challenging project, because the characteristic wave structures for RMHDs has not yet been analytically given. We obtained an analytic expression of eigenvalues and eigenvectors of the flux Jacobian matrix of RMHDs for one-dimensional, isothermal flows with two velocity and magnetic field components (that is, x and y components only), which can be used to build numerical codes. The degeneracies were taken into account. Here, we present preliminary test results with an RMHD code based on the total variation diminishing (TVD) scheme.

  • PDF

Numerical and statistical analysis of permeability of concrete as a random heterogeneous composite

  • Zhou, Chunsheng;Li, Kefei
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.469-482
    • /
    • 2010
  • This paper investigates the concrete permeability through a numerical and statistical approach. Concrete is considered as a random heterogeneous composite of three phases: aggregates, interfacial transition zones (ITZ) and matrix. The paper begins with some classical bound and estimate theories applied to concrete permeability and the influence of ITZ on these bound and estimate values is discussed. Numerical samples for permeability analysis are established through random aggregate structure (RAS) scheme, each numerical sample containing randomly distributed aggregates coated with ITZ and dispersed in a homogeneous matrix. The volumetric fraction of aggregates is fixed and the size distribution of aggregates observes Fuller's curve. Then finite element method is used to solve the steady permeation problem on 2D numerical samples and the overall permeability is deduced from flux-pressure relation. The impact of ITZ on overall permeability is analyzed in terms of ITZ width and contrast ratio between ITZ and matrix permeabilities. Hereafter, 3680 samples are generated for 23 sample sizes and 4 contrast ratios, and statistical analysis is performed on the permeability dispersion in terms of sample size and ITZ characteristics. By sample theory, the size of representative volume element (RVE) for permeability is then quantified considering sample realization number and expected error. Concluding remarks are provided for the impact of ITZ on concrete permeability and its statistical characteristics.

Comparative Analysis of Offset Voltage PWM and $V_{max}-V_{mid}$ PWM Method for 3 Phase Matrix Converter (3상 매트릭스 컨버터에 사용되는 옵셋전압 PWM 방법과 $V_{max}-V_{mid}$ PWM 방법의 비교분석)

  • Cha, Han-Ju;Kim, Woo-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.285-291
    • /
    • 2009
  • In this paper, comparative analysis of offset voltage PWM method and $V_{max}-V_{mid}$ PWM method for three-phase matrix converter is addressed by using a simple analytical and graphical method. Offset voltage PWM method calculates PWM patterns in terms of offset voltage and variable slope of carrier, and it simplifies matrix converter modulation algorithm significantly. $V_{max}-V_{mid}$ PWM method generates patterns by using two phases and maintaining a remaining phase to base phase, and it is implemented in the industrial products. The most important performance criterion of modulation method is a magnitude of current ripples and it is analytically modelled. The graphical illustration of theses complex multivariable functions make per-carrier cycle and per fundamental cycle behavior of two PWM methods understood. Two modulation methods are analysed with the analytical formulas and graphics, and the analysis shows offset voltage PWM method is superior to $V_{max}-V_{mid}$ PWM method with respect to input current ripples and output voltage ripples.

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.