• Title/Summary/Keyword: Flux Linkage

Search Result 232, Processing Time 0.034 seconds

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Harmonics Analysis of Air Gap Flux and Output Voltage in Generator Taking Account of the Rotor Movement (회전자 이동을 고려한 발전기 공극자속 및 유기전압의 고조파 해석)

  • Kim, C.E.;Jung, Y.B.;Yoon, S.J.;Park, B.S.;Ha, H.S.;Noh, C.W.;Kim, S.W.;Kim, J.H.;Im, D.H.;Ko, Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.205-207
    • /
    • 1994
  • This paper presents an analyzing method of the distortion factor of the output voltage in generator on the basis of the stator coil flux linkage calculation. In the simulation, 2 dimensional finite clement method is used considering the rotor movement. As an application of the proposed method, we calculated the harmonics of air gap flux and the output voltage in the 150KW class synchronous generator.

  • PDF

Modeling of in Silico Microbe System based on the Combination of a Hierarchical Regulatory Network with Metabolic Network (계층적 유전자 조절 네트워크와 대사 네트워크를 통합한 가상 미생물 시스템의 모델링)

  • Lee, Sung-Gun;Han, Sang-Il;Kim, Kyung-Hoon;Kim, Young-Han;Hwang, Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.843-850
    • /
    • 2005
  • FBA(flux balance analysis) with Boolean rules for representing regulatory events has correctly predicted cellular behaviors, such as optimal flux distribution, maximal growth rate, metabolic by-product, and substrate concentration changes, with various environmental conditions. However, until now, since FBA has not taken into account a hierarchical regulatory network, it has limited the representation of the whole transcriptional regulation mechanism and interactions between specific regulatory proteins and genes. In this paper, in order to solve these problems, we describe the construction of hierarchical regulatory network with defined symbols and the introduction of a weight for representing interactions between symbols. Finally, the whole cellular behaviors with time were simulated through the linkage of a hierarchical regulatory network module and dynamic simulation module including FBA. The central metabolic network of E. coli was chosen as the basic model to identify our suggested modeling method.

A Study on Flux Immunity MUF for Improving Flip Chip PKG Reliability (Flip Chip PKG 신뢰성 향상을 위한 Flux Immunity 개선 MUF 구현 방안 연구)

  • Lee, Junshin;Lee, Hyunsuk;Kim, Minseok;Kim, Sungsu;Moon, Kiill
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.49-52
    • /
    • 2022
  • As the difficulty of flip chip products increase, interest in stable PKG material technology from the viewpoint of reliability is increasing. Currently, the representative of poor reliability that are mainly occurring in flip chip PKG are Sn bridge and Cu dendrite. Two type defects are caused by void generated by the flux residue around the bump. In order to essentially minimize the risk of this type of reliability failure, the linkage between the composition of Molded Under-fill (MUF) and flux, which is related material, was reviewed. In this study, the correlation between base resin and filler, which is the main component of MUF, and flux, was defined, and the material composition design was carried out by refer to lesson learn. With the current material composition, it was confirmed that moisture absorption reliability 85%/85%/24hrs pass result and void did not occur during destructive analysis, and developed MUF has shown flux immunity improving result in flip Chip PKG. We think this study can be used in yield enhancement of flip chip process and give insights to study in compatibility between MUF and flux.

Development of a Compensating Algorithm for an Iron-cored Measurement CT using Flux-magnetizing Current Curves and Voltage-core Loss Current Curves (자속-자화 전류 곡선과 전압-철손 전류 곡선을 이용한 측정용 철심 변류기의 보상 알고리즘 개발)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kang, Hae-Gweon;Lee, Byung-Eun;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1849-1854
    • /
    • 2009
  • This paper describes the design, evaluation and implementation of a compensating algorithm for an iron-cored measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error of the CT. The proposed algorithm decomposes the exciting current into the core loss current and the magnetizing current and each of them is estimated. The core loss current is calculated from the secondary voltage and the voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-magnetizing current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core loss and magnetizing currents and then added to the measured current to obtain the correct secondary current. The voltage-core loss current curve and flux-magnetizing current curves, which are different from the conventional curves, are derived in this paper. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The experimental test results of an iron-core type electronic CT, which consists of the iron-core and the compensation board, are also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템)

  • 김동희;김민회;김남훈;배원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC). The problems of high-dynamic performance and maximum efficiency RSM drives controlled by DTC are saturation of stator linkage flux and nonlinear inductance characteristics with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance $L_d$ and $L_q$ can be compensated by adapting from measurable the modulus of the stator current and rotor position. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing $I_{ds} = I_{qs}$. This control strategy is proposed to achieve fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at $\pm$20 and $\pm$1500 rpm. The developed digitally high-performance motion control system shown good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel (2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Han, Tea-Hee;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

Analysis of Slot Leakage Reactance of Submersible Motor with Closed Slots during Starting Transient Operation

  • Bao, Xiaohua;Di, Chong;Fang, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Generally, closed slots are adopted to reduce the water friction loss in both the stator and the rotor of water filling submersible motor due to the special environment of operation. One of the obvious differences between the traditional induction motors and water filling submersible motors is that the submersible motors only need relatively smaller starting torque. This paper aims to analyze the slot leakage reactance of water filling submersible motor during starting transient operation. An improved analytical method which considered the magnetic saturation of the slot bridge and the skin effect of rotor bars is proposed. The slot permeance factor which has a direct impact on the slot leakage reactance is calculated. Then finite element models with different stator slot types are constructed and search coils are introduced to measure the slot flux linkage. Moreover, the starting performances of the models with two typical stator slots are compared and the flux leakage characteristics are obtained. Finally, the results obtained by finite element method are very close to the results obtained by analytical method.

Compensating Algorithm for the Secondary Current of a Measurement CT Considering the Hysteresis Characteristics of the Core (히스테리시스 특성을 고려한 측정용 변류기 2차 전류 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun;So, Soon-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1709-1714
    • /
    • 2007
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the measurement CT. The exciting current can be decomposed into the magnetizing current and the core loss current. The core loss current is obtained from the measured secondary current and the core loss resistance. The core flux linkage is calculated by integrating the measured secondary current, and then inserted into the flux-magnetizing current curve to obtain the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to obtain the correct current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the measurement CT.