• Title/Summary/Keyword: Flux Leakage

Search Result 313, Processing Time 0.024 seconds

Leakage Flux Distribution in the Simulated Environment

  • Kim, Chung-Hyeok;Kim, Tag-Yong;Oh, Yong-Cheul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.401-405
    • /
    • 2012
  • Current research about voltage leakage involves investigation of the effects of leaked voltage and current on humans through simulated environments and dummies. Electrocution results from leaked current when electricity flows through the body as a result of potential difference. Research that analyzes actual electrocution is insufficient because of the danger from leaked voltage present in the leakage area. This thesis analyzes magnetic flux density from current around a leak to investigate the distribution of current. The authors used a simulated environment to investigate electrocution accidents that frequently occur during floods through leakage along metal surfaces, and evaluated the distribution of leaked magnetic flux.

Corrosion Assessment of In-pipe using Magnetic Flux Leakage Technique (누설자속법을 이용한 배관내부 부식 평가)

  • 이원용;이병주;양성일;김영주;안봉영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.402-402
    • /
    • 2000
  • MFL(Magnetic Flux Leakage) methods are used extensively for inspection of ferromagnetic materials. As an example, pipelines that are buried underground are inspected using MFL methods. By the MFL methods, ferromagnetic pipelines are magnetized by a permanent magnet or an electromagnet and then flux leakage is detected at the defection position. In this paper, we perform modeling of the magnetized pipelines. Also we propose the method localization of th defected areas. The effectiveness of the proposed method is verified experimentally.

  • PDF

Induction motor sensor less speed control by stator flux oriented method (고정자 자속 기준 제어 방식에 의한 속도검출기 없는 유도전동기 속도 제어 시스템)

  • Park, Min-Ho;Kim, Kyoung-Seo;Kim, Heui-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.268-272
    • /
    • 1989
  • To avoid the use of position sensor or flux sensor in a field oriented induction machine drive system, the terminal quantities are often used to estimate the rotor flux. Since the estimation involves the leakage inductance of the machine, the performance of such systems is sensitive to the variations of leakage. Since estimation of the stator flux is independent of the leakage, the steady state performance of the stator flux oriented system is insensitive to the leakage inductance. In this paper, the torque response of stator flux oriented system is compared to that of rotor flux oriented system by digital simulation. And induction motor sensor less speed control by stator flux oriented method is developed. The performance of the speed estimation is showed by digital simulation.

  • PDF

Circular Holes Punched in a Magnetic Circuit used in Microspeakers to Reduce Flux Leakage

  • Xu, Dan-Ping;Jiang, Yuan-Wu;Lu, Han-Wen;Kwon, Joong-Hak;Hwang, Sang-Moon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.387-392
    • /
    • 2016
  • Lower flux leakage designs have become important in the development of microspeakers used in thin and miniaturized mobile phones. We propose four methods to reduce the flux leakage of the magnetic circuit in a microspeaker. Optimization was performed based on the proposed approach by using the response surface method. Electromagnetic analyses were conducted using the finite element method. Experimental results are in good agreement with the simulated results obtained in one degree-of-freedom analysis from 100 to 5 kHz. Both the simulated and experimental results confirm that one of the proposed methods is much more effective in reducing flux leakage than the other methods. In the optimized method, compared with a default approach, the average radial flux density in the air gap decreased only by 5.5%, the maximum flux leakage was reduced by 28.6%, and the acoustic performance at primary resonance decreased by 0.45 dB, which gap is indiscernible to the human ear.

A Study on Determining the Shape of Small Axial Cracks by using Magnetic Flux Leakage in NDT System for Underground Pipe (배관용 자기누설 비파괴 검사에서 축방향 미소결함의 형상 판정에 관한 연구)

  • Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • MFL PIG (Magnetic Flux Leakage Pipeline Inspection Gauge) is called the system which detects the defect for underground pipelines by using magnetic flux leakage method in nondestructive testing. This method is very suitable for testing pipelines because pipeline has high magnetic permeability. MFL PIG generates the magnetic fields to the pipe axially oriented, and detect the signal of leakage flux by using hall sensor. However, MFL PIG is hard to detect the axially oriented crack with small size because the magnetic flux leakage is not enough to be occurred. To detect the small size and axially oriented crack, the circumferential MFL (CMFL) PIG is being proposed and it can maximize the leakage flux for the axial crack by performing magnetic fields circumferentially on the pipe. In this paper, CMFL PIG is applied to detect the axially oriented crack with small size and the analysis for the distribution and the amplitude of the leakage flux signal is performed by using three dimensional finite element method. From sensing signals, the method how to determine the shape of axially oriented cracks is proposed and verified with experiment.

A study on the Measurement of Residual Flux for Transformer (변압기 잔류자속 측정에 관한 연구)

  • Kim, Young-Hak
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.133-138
    • /
    • 2022
  • In previous studies to obtain the residual magnetic flux of the transformer using the leakage magnetic flux, a transfer function was used. The transfer function was consisted with the leakage magnetic flux measured outside the transformer and the residual magnetic flux measured at the moment passing through the two ± residual points. In this study, a method of calculating the ratio of the maximum operating leakage flux to the residual leakage flux was proposed The advantage of this method is to avoid the uncertainty of the transfer function due to current noise. Then, the noise of the sensor was measured to investigate the effect of the drift of the noise on the measurement results. Comparing the residual leakage magnetic flux density with 80nT of the drift noise, 66 times or more at a distance of 10 mm and 5 times or more at a distance of 100 mm were obtained. 100mm was the maximum measurement distance to obtain the residual magnetic flux.

Nondestructive Testing of Welding Flaw at Gas Pipeline by Measuring Magnetic Flux Leakage (누설자속 측정에 의한 가스배관의 용접결함에 대한 비파괴 탐상)

  • Ryu, Kwon-Sang;Park, Soo-Yung;Kim, Yong-Il;Lee, Wan-Kyu;Lim, Jae-Kyun;Nam, Young-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • We have developed a system for nondestructive measurement of the magnetic flux leakage at welding flaws, existing in a gas pipeline by Hall sensor. For measuring the magnetic flux leakage, we designed a reference specimen having four kinds of welding flaws. Magnetic flux leakage is measured around the welding flaws of the specimen. The possibility for classification of different kinds of welding flaws is carried out by means of the peak-peak value and the interval between peak-peak of the magnetic flux leakage.

  • PDF

Influence of Flux Density of Electric Leakage Area by Inundation (침수에 의한 누전지역의 자속밀도 영향)

  • Choi, Woon-Shik;Kim, Tag-Yong;Kim, Jin-Sa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1109-1113
    • /
    • 2010
  • Recently, important for the safety has been increasing together economic developments. The leakage only is measured by the voltage difference. This method is a way to contact the electric leakage area. It can cause electric shock at users. We propose a non-contact method to detect a short circuit in this paper. We investigate magnetic field at electric leakage area to present non-contact method. Simulated environment created a short circuit in the flooded areas. Voltage is supplied 50, 150 and 200[V]. Magnetic field was measured at 0, 5 and 10[cm]. Magnetic flux was reduced about $0.4[{\mu}T/cm]$ depending on the distance changes in the steady region. But we confirmed that magnetic flux is measured the same value depending on the distance changes in the electric leakage area.

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

Imaging Magnetic Flux Leakage based Steel Plate Damage for Steel Structure Diagnosis (강구조물 진단을 위한 누설자속 기반 강판 손상의 이미지화)

  • Kim, Hansun;Kim, Ju-Won;Yu, Byoungjoon;Kim, Wonkyu;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, the magnetic flux leakage technique was applied to diagnose steel plate damage, imaging technique was applied through those signals. Steel plate specimens with different thicknesses were prepared for the imaging the magnetic flux leakage signal, and 6 different depths of damage were artificially processed at the same locations on each specimen. The sensor head consist hall sensor and magnetization yoke was fabricated to magnetize the steel plate specimen and measure the magnetic flux leakage signal. In order to remove the noise and increase the resolution of the image in the signal collected from the hall sensor, various of signal processing was performed. P-P value was analyzed for each channel to analyze the magnetic flux leakage signals measured from each damaged part. Based on the above processed signals and analysis, it was converted into heatmap image. Through this, it was possible to identify the damage on the steel plate at glance by imaging magnetic flux leakage signal.