• Title/Summary/Keyword: Flux Analysis

Search Result 2,736, Processing Time 0.031 seconds

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.

Analysis of Mechanical Fixation Made of Aluminum Alloy in an Axial Flux Permanent Magnet Machine

  • Lee, Jiyoung;Park, Byounggung;Koo, Daehyun
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.309-313
    • /
    • 2014
  • This paper presents an eddy current loss analysis of a Mechanical Fixation (MF) made of 6061 aluminum alloy, which is used for an NS type double-rotor single-stator axial flux permanent magnet machine. The prototype MF made of aluminum alloy shows good mechanical performance, but poor electro-magnetic performance, since the machine's efficiency can decrease because of eddy current loss in the MF. In order to prevent efficiency decrease, a modification of the MF structure is also introduced. Three-dimensional finite element analysis (FEA) is used for magnetic field analysis, and eddy current losses are computed. The analysis results are compared to, and verified by the test results.

Analysis of Air-gap Flux Variations by Rotor Vibration in the Induction Motor (유도전동기의 회전자 진동에 따른 공극의 자속변화 해석)

  • Hwang, Don-Ha;Lee, Ki-Chang;Lee, Joo-Hoon;Kim, Yong-Joo;Choi, Kyeong-Ho;Lee, Jin-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.62-64
    • /
    • 2004
  • This paper presents results of the finite-element(FE) analysis of air-gap flux variation in induction motor when rotor vibration conditions occur. Accurate modelling and analysis of rotor vibration in the machine are developed using FE software packages, and search coils are used for measuring the flux. In the FE analysis, the induction motor with 380 [V], 5 [HP], 4P, 1742 [rpm] ratings is used. The results of FE analysis can be useful for on-line vibration monitoring of the motor.

  • PDF

Performance Comparison of Axial Flux Permanent Magnet Generator according to Volume (축 자속 영구자석 발전기의 체적에 따른 성능 비교)

  • Jang, Seok-Myeong;Koo, Min-Mo;Park, Yu-Seop;Choi, Jang-Young;Lee, Yong-Bok;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1071-1072
    • /
    • 2011
  • The axial flux machine has higher power density than conventional radial flux machine, so it is widely applied to various industrial area, for instance, low speed wind power generator. For the conventional radial flux machine, 2D finite element method (FEM) is generally applied, but axial flux machine has to employ 3D FEM with long analysis time due to its own structural characteristic. This paper deals with the performance comparison of axial flux machine according to volume.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

Characteristic Analysis for IPMSM Considering Flux-Linkage Ripple

  • Woo, Dong-Kyun;Kwak, Sang-Yeop;Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.592-596
    • /
    • 2010
  • In a multi-layer interior permanent magnet synchronous motor, the d- and q-axis parameters vary nonlinearly according to different load conditions, consequently changing the level of saturation. The flux-linkage of d- and q-axis conveys ripple characteristics resulting from mechanical structure and degree of magnetic saturation. If the calculated flux-linkage is correct, the torque using the Maxwell stress tensor method is the same torque calculated by the flux-linkage. However, discrepancy between results exists. In this paper, the d- and q-axis flux-linkage, in consideration of the ripple characteristic, is calculated. Simulation results are then compared with experimental results.

FLUX CALIBRATION METHOD OF SLIT SPECTROMETER FOR EXTENDED SOURCES

  • Lee, Sung-Ho;Park, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.151-155
    • /
    • 2006
  • Long slit spectrometers are widely used in optical and infrared bands in astronomy. Absolute flux calibration for extended sources, however, is not straightforward, because a portion of the radiation energy from a flux calibration star is blocked by the narrow slit width. Assuming that the point spread function(PSF) of the star is circularly symmetric, we develop a robust method to extrapolate the detected stellar flux to the unobscured flux using the measured PSF along the slit-length direction. We apply this method to our long slit data and prove that the uncertainty of the absolute flux calibration is less than a few percents.

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

Analysis on Hysteresis Characteristics of Flux-Lock Type HTSC Fault Current Limiter (자속구속형 고온초전도 사고전류 제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Han, Tae-Hee;Do, Ho-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.493-495
    • /
    • 2006
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

Theoretical Analysis of Charging Current of Linear Type Magnetic Flux Pump According to the Penetrated Position and Moving Speed of Magnetic Flux (침투자속의 위치와 이동속도에 따른 리니어형 자속펌프 충전전류의 이론적 해석)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • We proposed a linear type magnetic flux pump (LTMFP) as a power supply for superconducting magnet system. In order to explain the operating mechanism of pumping action, the pumping sequence based on penetrated position and moving speed of magnetic flux on the superconducting Nb foil should be understood. In this paper, we induced a theoretical equation for pumping current of LTMFP according to the position of normal spot and corresponding equivalent circuit. In addition, current charging tendencies under the intensity of magnetic flux and frequency were described based on the theoretical pumping equation.