• Title/Summary/Keyword: Flutter instability

Search Result 117, Processing Time 0.032 seconds

Dynamic Instability of Elastically Restrained Beams under Distributed Tangential Forces (분포접선력을 받는 탄성지지된 보의 동적 불안정)

  • 류봉조;김인우;이규섭;임경빈;최봉문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.140-147
    • /
    • 1998
  • The dynamic behavior of elastically restrained beams under the action of distributed tangential forces is investigated in this paper. The beam, which is fixed at one end, is assumed to rest on an intermediate spring support. The governing equations of motion are derived from the energy expressions, and the finite element formulation is employed to calculate the critical distributed tangential force. Jump phenomena for the critical distributed tangential force and instability types are presented for various spring stiffnesses and support positions. Stability maps are generated by performing parametric studies to show how the distributed tangential forces affect the frequencies and the stability of the system considered. Through the numerical simulations, the following conclusioils are obtained: (i) Only flutter type instability exists for the dimensionless spring stiffness K $\leq$ 97, regardless of the position of the spring support. (ii) For the dimensionless spring stiffness K $\leq$ 98, the transition from flutter to divergence occurs at a certain position of the spring support, and the transition position moves from the free end to the free end of the beam as the spring stiffness increases. (iii) For K $\leq$ 10$^{6}$ the support condition can be regarded as a rigid support condition.

  • PDF

Critical and Flutter Speeds of Rotating Disks in Information Storage Devices (정보저장기기용 회전디스크의 임계속도 및 플러터 속도에 관한 연구)

  • 이승엽;윤동화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.484-489
    • /
    • 2001
  • Recent trends in information storage devices disk are the transition from CD drives to high density DVD drives, the development of writable disk drives and the appearance of several high-density portable disk drives. In some flexible disk drives, self-excited disk vibrations become severe as rotation speed increases near or above critical speed. Critical speeds of CD/DVD, ASMO and floppy disks are experimentally measured and compared with analytical predictions. Flutter instability caused by aero-induced disk vibration at high speeds are experimentally observed. In ASMO, three nodal-diameter mode experiences its flutter at 8750 rpm with the frequency lock-on phenomenon. The CD/DVD disk does not have the aero-induce flutter up to 14,000 rpm.

  • PDF

Flutter Analysis of Flexible Wing for Electric Powered UAV (전기동력무인기 유연날개 플러터 해석)

  • Lee, Sang-Wook;Shin, Jeong Woo;Choi, Yong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.189-192
    • /
    • 2014
  • Recently, development of electric powered UAV for high altitude and long endurance mission has been conducted worldwide. Long endurance requirement necessitates high lift over drag (L/D) aerodynamic characteristics and lightweight structures, leading to highly flexible wings with high aspect ratio. These highly flexible wings increase the danger of catastrophic aircraft failure due to flutter, which is a dynamic aeroelastic instability occurring from the interaction of aerodynamic, inertial, and elastic forces acting on the aircraft flying through the air. In this paper, flexible wing for electric powered UAV whose skin is fabricated using mylar film for lightweight design is briefly explained. In addition, flutter analysis procedures and results for the flexible wing in order to substantiate the aeroelastic stability requirements are presented.

  • PDF

Vibrations and Stability of Flexible Corotating Disks in an Enclosure (밀폐된 용기 안에서 동시에 회전하는 디스크의 진동과 안정성에 관한 연구)

  • Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.76-84
    • /
    • 2009
  • The vibration and stability of thin, flexible corotating disks in an enclosed compressible fluid is investigated analytically and compared with the results of a single rotating disk. The discretized dynamical system of the corotating disks is derived in the compact form of a classical gyroscopic system similar with a single disk. For the undamped system, coupled structure-acoustic traveling waves destabilize through mode coalescence leading to flutter instability. However, it is found that the flutter regions of the corotating disks are wider than those of a single disk. A detailed investigation of the effects of dissipation arising from acoustic or disk damping is also performed. Finally, in the presence of both acoustic and disk dampings, the instability regions are found and compared with those of a single disk. Although this study does not allow a radial clearance between the disk and the enclosure, the computational frame work of the problem can be expanded to the system having the radial clearance in an enclosure.

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

Crack Effects on Dynamic Stability of Elastically Restrained Valve-pipe System (탄성 지지된 밸브 배관계의 안정성에 미치는 크랙의 영향)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2011
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated. The pipe system with a crack is modeled by using extended Hamilton's Principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. In this paper, the influence of attached mass, its position and crack on the dynamic stability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by the changing parameters.

Influence of a Crack on Stability of Pipe Conveying Fluid (유체유동 파이프의 안정성에 미치는 크랙의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever and simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Ahn, Tae-Su;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

Wind tunnel test research on aerodynamic means of the ZG Bridge

  • He, Xiangdong;Xi, Shaozhong
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • The ZG Bridge(preliminary design), with unfavorable aerodynamic stability characteristics, is a truss-stiffened suspension bridge, its critical wind speed of flutter instability is much lower than that of code requirement, In the present paper, based on both aerostatic and aeroelastic section model wind tunnel test, not only effects of some aerodynamic means on aerodynamic stability of its main girder are investigated, but also such effective aerodynamic means of it as flap and plate-like center stabilizer are concluded.