• Title/Summary/Keyword: Flutter Suppression

Search Result 22, Processing Time 0.029 seconds

Flutter Suppression of Cantilevered Plate Wing using Piezoelectric Materials

  • Makihara, Kanjuro;Onoda, Junjiro;Minesugi, Kenji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-85
    • /
    • 2006
  • The supersonic flutter suppression of a cantilevered plate wing is studied with the finite element method and the quasi-steady aerodynamic theory. We suppress wing flutter by using piezoelectric materials and electric devices. Two approaches to flutter suppression using piezoelectric materials are presented; an energy-recycling semi-active approach and a negative capacitance approach. To assess their flutter suppression performances, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. The critical dynamic pressure drastically increases with our flutter control using a negative capacitor.

Flutter Suppression of a 3-DOF Airfoil Using CFD/CSD with Integrated Optimal Control Method (CFD/CSD 및 최적제어기법을 연계한 3-자유도계 에어포일의 플러터 억제)

  • Kim, Dong-Hyun;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.929-929
    • /
    • 2005
  • In this study, computational demonstrations for the flutter suppression are presented for the 3-DOF airfoil system with oscillating flap. Advanced computational methods such as computational fluid dynamics (CFD) and computational structural dynamics (CSD) are used and a simultaneous coupling method has been developed to accurately conduct flutter analyses. In addition, optimal control theory is integrated into the CFD based flutter analysis method to construct the coupled aeroservoelastic analysis system for the airfoil with oscillating flap. For a well-defined typical section model, fundamental unsteady aerodynamics and flutter characteristics are investigated. Finally, to show the effectiveness of flutter control the physical aeroelastic responses are directly compared between the open loop and the closed loop systems.

  • PDF

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

Flutter Suppression of 2-D Wing/Store Model (2차원 날개/스토어 모델의 플러터 억제)

  • Bae, Jae-Sung;Kim, Do-Hyung;Yang, Seung-Man;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1197-1201
    • /
    • 2001
  • Flutter suppression of a wing/store model is investigated. An aircraft wing with a store is modeled as a 2-D typical section. Unsteady aerodynamics of the wing/store model are computed by using Doublet Hybrid Method(DHM) in the frequency-domain, and are approximated by Minimum-state(MS) approximation. LQG controller is used to suppress the flutter of the wing/store model and the aeroelastic characteristics of the closed-loop system are investigated. The flutter characteristics of the wing/store model are improved and the flutter speed is increased up to about 16 %.

  • PDF

Flutter Suppression of Wing/store Model (날개/스토어 모델의 플러터 억제)

  • Bae, Jae-Sung;Kim, Do-Hyung;Yang, Seung-Man;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.493-501
    • /
    • 2002
  • Flutter suppression of a wing/store model is investigated. An aircraft wing with a store is modeled as a 2-D typical section. Unsteady aerodynamics of the wing/store model are computed by using doublet hybrid method(DHM) in the freauency-domain, and are approximated by minimumstate(MS) approximation. LQG controller is used to suppress the flutter of the wing/store model and the aeroelastic characteristics of the closed-loop system are investigated. The flutter characteristics of the wing/store model are improved and the flutter speed is increased up to about 24 %.

Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits (다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제)

  • Moon, Seong-Hwan;Kim, Seung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF

Flutter Suppression of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개의 플러터 억제)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.448-457
    • /
    • 2013
  • This paper presents the design of an active flutter suppression system for flexible wing using sliding mode control method. The aerodynamic force generated by the motion of a flexible wing control surface is utilized as control force. For this purpose, aeroservoelastic model is formulated by blending aeroelastic model, control surface actuator model, and gust model. A sliding mode controller is designed for active flutter suppression on the aeroservoelastic model in conjunction with Kalman filter that estimates the system states based on the measured output. The performance of the designed controller is demonstrated via numerical simulation for the representative flexible wing model.

Transonic Flutter Suppression of the 2-D Flap Wing with External Store using CFD-based Aeroservoelasticity

  • Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • An analysis procedure for the combined problem of control algorithm and aeroelastic system which is based on the computational fluid dynamics(CFD) technique has been developed. The aerodynamic forces in the transonic region are calculated from the transonic small disturbance(TSD) theory. An linear quadratic regulator(LQR) controller is designed to suppress the transonic flutter. The optimal control gain is estimated by solving the discrete-time Riccati equation. The system identification technique rebuilds the CFD-based aeroelstic system in order to form an adequate system matrix which involved in the discrete-time Riccati equation. Finally the controller, that is constructed on the basis of system identification technique, is used to suppress the flutter phenomenon of the airfoil with attached store. This approach, that is, the CFD-based aeroservoelasticity design, can be utilized for the development of effective flutter controller design in the transonic region.

Response characteristics and suppression of torsional vibration of rectangular prisms with various width-to-depth ratios

  • Takai, Kazunori;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.1-22
    • /
    • 2006
  • The response characteristics and suppression of flow-induced vibrations of rectangular prisms with various width-to-depth ratios were experimentally investigated. The prisms were rigid and elastically mounted at both ends to enable constrained torsional vibrations only. The present study focused on torsional vibrations, one of the three types of flow-induced vibrations generated in a rectangular prism. First, the response characteristics of torsional vibrations generated in rectangular prisms were investigated by free-vibration tests. It was found that the response characteristics of torsional vibrations generated in rectangular prisms could be classified into six patterns depending on the width-to-depth ratio. Next, the response characteristics of torsional vibrations observed in the free-vibration tests were reproduced by forced-vibration tests, and the mechanisms by which the three types of flow-induced vibrations, low-speed torsional flutter, vortex excitation and high-speed torsional flutter, are generated in the rectangular prisms were elucidated on the basis of characteristics of fluid forces and visualized flow patterns. Experiments were also carried out to establish an effective method for suppressing flow-induced vibrations generated in the rectangular prisms, and it was found that low-speed torsional flutter and high-speed torsional flutter could be suppressed by placing a small normal plate upstream of the prism, which results in suppression of the alternating rolling-up of the shear layers separating from the leading edges of the prism. It was also found that vortex excitation could be suppressed by placing a splitter plate downstream of the prism, which results in suppression of the generation of wake vortices.

Suppression of bridge flutter by passive aerodynamic control method (교량 플러터의 공기역학적 수동제어)

  • Kwon S.-D.;Jung S.;Chang S.-P.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.435-438
    • /
    • 2002
  • In this study, a new passive aerodynamic control method is proposed. Control plate which is oscillated by TMD-like mechanism makes flutter stabilizing airflow. Effectiveness of proposed model is verified by experimental and analytical study. In addition, various parameters of the proposed system are investigated. Applicability to long span bridge is also examined. According to the research results, proposed model is very effective in suppressing flutter, and it also shows remarkable robustness.

  • PDF