• Title/Summary/Keyword: Fluorophores

Search Result 37, Processing Time 0.029 seconds

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young;Korystov, Dmitry;Jin, Young-Eup;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2253-2260
    • /
    • 2007
  • A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.

Chemiluminescent Properties of Novel Biphenyl Analogue Blue Fluorophores

  • Cheon, Jong-Woo;Lee, Chil-Won;Geum, Neri;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1202-1206
    • /
    • 2004
  • Novel naphthyl-containing biphenyl analogues were prepared by Suzki reaction for the chemiluminescent blue fluorophores. UV-Vis absorption, photoluminescence, chemiluminescence and CIE chromaticities were measured. The fluorophores displayed blue photoluminescence in solution with a maximum intensity around 378-415 nm. Sodium salicylate-catalyzed reaction of them with bis(2 carbopentyloxy-3,5,6-trichlorophenyl)-oxalate with hydrogen peroxide provided a strong chemiluminescent red light emission with wavelengths of 398-427 nm; these were similar to the photoluminescent spectra. The chemiluminescent intensity decayed exponentially and the glow of chemiluminescence, which was visible with naked eyes, was maintained for more than 4 h.

Chemiluminescent Properties of Fluorene- and Carbazole-Containing Polymeric Fluorophores

  • Lee, Chil Won;Lee, Hui U;Kim, Cheol Hui;Gang, Myeong Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.701-704
    • /
    • 2000
  • Fluorene and carbazole-containing distyrylarylene model and polymeric fluorophores were prepared by reacting 2,7-dibromo-9-butylfluorene and 3,6-dibromo-9-butylcarbazole with styrene and divinylbenzene using the Heck reaction for the chemiluminesc ence. The UV-vis absorbance, photoluminescence (PL) as well as the chemiluminescence (CL) characteristics of the model and polymeric fluorophores were measured. Sodium salicylate-catalyzed reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO) with hydrogen peroxide produced a strong chemiluminescent blue light emission with 439-489 nm in the presence of the fluorophore. The wave-length of CL light was similar to that of photoluminescence. The chemiluminescent intensity was decayed according to the exponential equation.The glow of CL maintained more than 12 hr and was visible with naked eye.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Fluorescece Microscope using Total Internal Reflection for Measuring Biochip (내부 전반사 방식에 의한 바이오칩 측정 장비)

  • Bae, Soo-Jin;Kang, Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1694-1698
    • /
    • 2007
  • This study suggests a new fluorescence microscope to observe micro-samples within fluorophore in a variety of biomedical fields including the fluorescence analysis of a biochip, such as a DNA micro-array. A fluorescence microscope is a device for irradiating light onto a micro-object, executing an excitation and fluorescence emission process. In this study, it adopts a total internal reflection fluorescence(TIRF) method to excite a whole micro-sample substrate different from an existing way which uses an evanescent wave resulting from a total internal reflection on the micro-sample surface. Suggested TIRF microscope can reduce optical noise and obtain images with higher sensitivity thus obtain precise information about the density, quantity, location, etc. of a flurophore, and can simultaneously process separate images even when plurality of fluorophores having different excitation and fluorescent wavelength ranges is distributed, thus easily obtain information about the fluorophores.

Chemiluminescence Properties of Polymeric Fluorophores Containing Distyrylarylene Unit

  • Lee, Hui U;Kim, Cheol Hui;Gong, Myeong Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.727-731
    • /
    • 2001
  • Conjugated-non-conjugated alternating block copolymers containing distyrylarylene units were synthesized via Wittig reaction for chemiluminescent fluorophores. The polymers were differentiated from others by the presence of aromatic unit in the chromophoric block. When UV-VIS, photoluminescence and chemiluminescence spectra of these materials were compared with copolymers, a strong bathochromic effect was observed. A more pronounced red shift and higher chemiluminscence efficiency were observed in the polymer with anthracene ring. Sodium salicylate-catalyzed reaction of bis(2-carbopentyloxy-3,5,6-trichlorophenyl) oxalate with hydrogen peroxide produced a strong chemiluminescence from blue to yellow-green light emission with wavelength of 450-537 nm in the presence of the fluorophore. The chemiluminescent intensity decayed exponentially. The glow of chemiluminescence maintained more than l2 hr and was visible with the naked eye.