• Title/Summary/Keyword: Fluorine-18 FDG

Search Result 29, Processing Time 0.023 seconds

The Usefulness of F-18-FDG PET and The Effect of Scan Protocol in Diagnosis of Intraocular Tumors (안구 내 종양의 진단에 있어서 F-18-FDG PET의 유용성과 검사 방법의 영향)

  • Lee, Jae-Soung;Yang, Won-Il;Kim, Byoung-Il;Choi, Chang-Woon;Lim, Sang-Moo;Lee, Tae-Won;Sin, Min-Kyeung;Hong, Soung-Woon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 1999
  • Purpose : It is important to differentiate malignant from benign lesions of intraocular masses in choosing therapeutic plan. Biopsy of intraocular tumor is not recommended due to the risk of visual damage. We evaluated the usefulness of F-18-FDG PET imaging in diagnosing intraocular neoplasms. Materials and Methods: F-18-FDG PET scan was performed in 13 patients (15 lesions) suspected to have malignant intraocular tumors. There were 3 benign lesions (retinal detachment, choroidal effusion and hemorrhage) and 10 patients with 12 malignant lesions (3 melanomas, 7 retinoblastomas and 2 metastatic cancers). Regional eye images ($256{\times}256$ and $128{\times}128$ matrices) were obtained with or without attenuation correction. Whole body scan was also performed in eight patients (3 benign and 6 malignant lesions). Results: All malignant lesions were visualized while all benign lesions were not visualized. The mean peak standardized uptake value (SUV) of malignant lesions was $2.64{\pm}0.57g/ml$. There was no correlations between peak SUV and tumor volume. Two large malignant lesions ($> 1000 mm^3$) showed hot uptake on whole body scan. But two medium-sized lesions ($100-1000mm^3$) looked faint and two small ($<100mm^3$) lesions were not visualized. The images reconstructed with $256{\times}256$ matrix showed lesions more clearly than those with $128{\times}128$ matrix Conclusion: F-18-FDG PET scan is highly sensitivity in detecting malignant intraocular tumor For the evaluation of small-sized intraocular lesions, whole body scan is not appropriate because of low sensitivity. A regional scan with sufficient acquisition time is recommended for that purpose. Image reconstruction in matrix size of $256{\times}256$ produced clearer images than the ones in $128{\times}128$, but it does not affect the diagnostic sensitivity.

  • PDF

A Study on Dose Assessment by 18F-FDG injected into Patients (환자에게 주입된 18F-FDG 의한 선량 평가에 대한 연구)

  • Kim, Chang-Ju;Kim, Jang-Oh;Jeong, Geun-Woo;Shin, Ji-Hey;Lee, Ji-Eun;Jeon, Chan-Hee;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.467-475
    • /
    • 2020
  • The purpose of this study is to assess doses to 18F-FDG, a radioactive drug, during PET examinations, to alleviate anxiety about radiation in patients and carers, to minimize the indiscriminate examination progress caused by medical institution personnel and space clearance problems, and health examination. The dose assessment was measured using a thermo-fluorescent dosimeter (TLD) and an electronic personal dosimeter (EPD) at the location of the cervical (hypothyroid), thorax (heart), and lower abdomen (breeding line) which are the three highest tissue areas of the radiation tissue weighting. In addition, spatial dose rates and radioactivity in urine were measured using GM counters and ion boxes. The results are as follows: First, the personal dosimeter TLD was measured 0.0425±0.0277 mSv in the cervical region, 0.0440±0.0386 mSv in the thorax and 0.0485±0.0436 mSv in the lower abdomen, with little difference in the heart dose depending on radiation sensitivity. The EPD was measured at 0.942±0.141 mSv/h immediately after the cervical position, and 0.192±0.031 mSv/h after 120 minutes. Immediately after the thorax position, 0.516±0.085 mSv/h, 120 minutes later 0.128±0.040 mSv/h. Immediately after the lower abdomen position, 0.468±0.091 mSv/h, and after 120 minutes 0.105±0.021 mSv/h were measured. The spatial dose rate at the GM counter was measured immediately at 0.041±0.005 mSv/h, 120 minutes later at 0.014±0.002 mSv/h. The radioactivity in urine using ion chamber was measured at 0.113±0.24 MBq/cc after 60 minutes and 0.063±0.13 MBq/cc after 120 minutes. As a result, 18F-FDG should be administered, dose re-evaluated two hours after the PET test is completed, and caregivers should be avoided. In addition, it is deemed necessary to provide patients and carers with sufficient explanations and expected values of exposure dose to avoid reckless testing. It is hoped that the data tested in this study will help patients and families relieve anxiety about radiation, and that the radiation workers' exposure management system and institutional improvements will contribute to the development of medical radiation.

Positron Emission Tomography with $^{18}F-FDG$ Fluorodeoxyglucose for Primary Lymphoma of Bone (뼈에 발생한 악성 림프종 환자의 치료 효과 판정에서 $^{18}F-FDG$ Positron Emission Tomography의 유용성)

  • Kim, Nam-Don;Park, Yeon-Hee;Ki, Seung-Seog;Park, Yong-Jin;Kim, Heoyng-Joon;Ryoo, Baek-Yeol;Kim, Heung-Tae;Kim, Sung-Eun;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.331-335
    • /
    • 2003
  • Purpose: Accurate assessment of the lesion after treatment of patients with bone lymphoma is difficult. In this patient who demonstrated complete remission after chemotherapy, the regions of fluorine-18 fluorodeoxyglucose $(^{18}FFDG)PET$ uptake diminished more rapidly fellowing therapy, indicating a complete response at much earlier stage than did Magnetic Resonance Imaging (MRI) or CT based findings. With the conventional methods, such as MRI and CT, It was difficult to assess whether the residual tumor tissue was viable or not. Decision to complete response is very important in patients with lymphoma to plan the further treatment. We experienced a patient with primary lymphoma of bone who revealed complete response to chemotherapy on $^{18}FFDGPET$ while CT showed persistent destructive bone lesion. Thus, $^{18}FFDGPET$ study after therapy may be superior to CT in the evaluation of response to treatment in primary lymphoma of bone.

Staging of Esophageal Cancer Using Positron Emission Tomography : Comparing to Computed Tomography (양전자방출단층촬영술(PET)을 이용한 식도암 환자의 병기 결정 -전산화단층촬영술(CT)과의 비교-)

  • 심영목;박승준;김병태;김성철
    • Journal of Chest Surgery
    • /
    • v.32 no.4
    • /
    • pp.388-393
    • /
    • 1999
  • Background: Correct preoperative staging of esophageal cancer is a prerequisite for adequate treatment. We prospectively compared the accuracy of positron emission tomography (PET) with [fluorine-18]FDG in the staging of esophageal cancer to that of computed tomography (CT). Material and Method: The findings of FDG PET and of chest CT including lower neck and the upper abdomen of 20 biopsy-proven squamous cell carcinoma patients (male, 19; female, 1; mean age, 61) were compared with the pathologic findings obtained from a curative esophagectomy with lymph node dissection. Result: The sensitivities of FDG PET and CT for diagnosis of primary tumor were the same, 90.0% (18/20). Both FDG PET and CT failed to show the primary tumor in 2 of 20 patients; one had a 1cm sized carcinoma in situ and the other had T1 stage cancer. By using the results of the pathologic examinations of 193 removed lymph node groups, we calculated the diagnostic sensitivities, specificities and accuracies of PET and CT (*$\chi$2 p < 0.005). Sensitivity** Specificity Accuracy* PET 55.6%(30/54) 97.1%(135/139) 85.5%(165/193) CT 13.0%(7/54) 98.6%(137/139) 74.6%(144/193) One of four patients with a false-positive for PEThad had active pulmonary tuberculosis. Among the 24 tumor involved lymph node groups, PET failed to show tumor metastasis in 5 lymph node groups abutting the tumor and in 14 lymph node groups located where the decay correction was not performed. Conclusion: Based on the above findings, it is suggested that [F-18]FDG-PET is superior to CT in the detection of nodal metastases and in the staging of patients with esophageal cancer.

  • PDF

The Differentiation of Benign from Maligant Soft Tissue Lesions using FDG-PET: Comparison between Semi-quantitative Indices (FDG-PET을 이용한 악성과 양성 연부조직 병변의 감별: 반정량적 지표간의 비교)

  • Choi, Joon-Young;Lee, Kyung-Han;Choe, Yearn-Seong;Choi, Yong;Kim, Sang-Eun;Seo, Jai-Gon;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.90-101
    • /
    • 1997
  • The purpose of this study is to evaluate the diagnostic accuracy of various quantitative indices for the differentiation of benign from malignant primary soft tissue tumors by FDG-PET. A series of 32 patients with a variety of histologically or clinically confirmed benign (20) or malignant (12) soft tissue lesions were evaluated with emission whole body (5min/bed position) PET after injection of [$^{18}F$]FDG. Regional 20min transmission scan for the attenuation correction and calculation of SUV was performed in 16 patients (10 benign, 6malignant) followed by dynamic acquisition for 56min. Postinjection transmission scan for the attenuation correction and calculation of SUV was executed in the other 16 patients (10 benign, 6 malignant). The following indices were obtained. the peak and average SUV (pSUV, aSUV) of lesions, tumor-to-background ratio acquired at images of 51 min p.i. ($TBR_{51}$), tumor-to-background ratio of areas under time-activity curves ($TBR_{area}$) and the ratio between the activities of tumor ROI at 51 min p. i. and at the time which background ROI reaches maximum activity on the time-activity curves ($T_{51}/T_{max}$). The pSUV, aSUV, $TBR_{51}$, and $TBR_{area}$ in malignant lesions were significantly higher than those in benign lesions. We set the cut-off values of pSUV, aSUV, $TBR_{51},\;TBR_{area}$ and $T_{51}/T_{max}$ for the differentiation of benign and malignant lesions at 3.5, 2.8, 5.1, 4.3 and 1.55, respectively. The sensitivity, specificity and accuracy were 91.7%, 80.0%, 84.4% by pSUV and aSUV, 83.3%, 85.0%, 84.4% by $TBR_{51}$, 83.3%, 100%, 93.8% by $TBR_{area}$ and 66.7%, 70.0%, 68.8% by $T_{51}/T_{max}$. The time-activity curves did not give additional information compared to SUV or TBR. The one false negative was a case with low-grade fibrosarcoma and all four false positives were cases with inflammatory change on histology. The visual, analysis of FDG-PET also detected the metastatic lesions in malignant cases with comparable accuracy In conclusion, all pSUV, aSUV, $TBR_{51}$, and $TBR_{area}$ are useful metabolic semi-quantitative indices with good accuracy for the differentiation of benign from malignant soft-tissue lesions.

  • PDF

Spindle cell lipoma of the posterior neck: A case report (목뒤부위에 발생한 방추세포 지방종의 치험례)

  • Park, Sun Hee;Yim, Young Min;Jung, Sung No;Kwon, Ho
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.233-236
    • /
    • 2009
  • Purpose: Spindle cell lipoma(SCL) is an uncommon subcutaneous soft tissue neoplasm that arises in the shoulder and posterior neck of older male patients. The imaging appearance of SCL is not pathognomonic and can display some features overlapping with liposarcoma. We report a case of SCL on the posterior neck. Method: The patient is a 50 - year - old man with a slowly enlarging subcutaneous mass on the right side of posterior neck. Computed tomographic imaging revealed a 7.0 cm sized, well - circumscribed, heterogenous and fatty mass with enhanced solid components. Whole body Fluorine - 18 Fluorodeoxyglucose Positron emission tomogram(FDG PET-CT) showed little increase of FDG uptake on the right posterior neck and there was no distant metastasis. Results: The mass was surgically removed. The resection margin was free of tumor on frozen biopsy. Histopathologic examination indicated spindle cell lipoma consisting of a mixture of mature adipocytes and uniform spindle cells within a matrix of mucinous material. Conclusion: Although CT image of solidtary mass in posterior neck is similar with the one of liposarcoma, we should consider that it may be a spindle cell lipoma if PET-CT and other systemic studies reveal no distant metastasis. And we should perform fine needle aspiration to differentiate SCL from malignant lesions.

A Study on Preparation of 3'-$[^{18}F]$Fluoro-3'-deoxythymidine and Its Biodistribution in 9L Glioma Bearing Rats (3'-$[^{18}F]$Fluoro-3'-deoxythymidine의 합성과 9L glioma 세포를 이식한 래트에서의 체내동태에 관한 연구)

  • Shim, Ah-Young;Moon, Byung-Seok;Lee, Tae-Sup;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Yu, Kook-Hyun;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.263-270
    • /
    • 2006
  • Purpose: Several radioisotope-labeled thymidine derivatives such as $[^{11}C]$thymidine was developed to demonstrate cell proliferation in tumor. But it is difficult to track metabolism with $[^{11}C]$thymidine due to rapid in vivo degradation and its short physical half-life. 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) was reported to have the longer half life of fluorine-18 and the lack of metabolic degradation in vivo. Here, we described the synthesis of the 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) and compared with $([^{18}F]FET)\;and\;([^{18}F]FDG)$ in cultured 9L cell and obtained the biodistribution and PET image in 9L tumor hearing rats. Material and Methods: For the synthesis of $[^{18}F]$FLT, 3-N-tert-butoxycarbonyl-(5'-O-(4,4'-dimet hoxytriphenylmethyl)-2'-deoxy-3'-O-(4-nitrobenzenesulfonyl)-${\beta}$-D-threopentofuranosyl)thymine was used as a FLT precursor, on which the tert-butyloxycarbonyl group was introduced to protect N3-position and nitrobenzenesulfonyl group. Radiolabeling of nosyl substitued precursor with $^{18}F$ was performed in acetonitrile at $120^{\circ}C$ and deproteced with 0.5 N HCI. The cell uptake was measured in cultured 9L glioma cell. The biodistribution was evaluated in 9L tumor bearing rats after intravenous injection at 10 min, 30 min, 60 min and 120 min and obtained PET image 60 minutes after injection. Results: The radiochemical yield was about 20-30% and radiochemical purity was more than 95% after HPLC purification. Cellular uptake of $[^{18}F]$FLT was increased as time elapsed. At 120 min post-injection, the ratios of tumor/blood, tumor/muscle and tumor/brain were $1.61{\pm}0.34,\;1.70{\pm}0.30\;and\;9.33{\pm}2.22$, respectively. The 9L tumor was well visualized at 60 min post injection in PET image. Conclusion: The uptake of $[^{18}F]$FLT in tumor was higher than in normal brain and PET image of $[^{18}F]$FLT was acceptable. These results suggest the possibility of $[^{18}F]$FLT at an imaging agent for brain tumor.

Development and optimization of C-11 gas target system in KOTRON-13 cyclotron (KOTRON-13 사이클로트론의 고효율C-11 가스 표적장치)

  • Lee, Hong-Jin;Lee, Won-Kyeong;Park, Jun-Hyung;Moon, Byung-Seok;Lee, In-Won;Chae, Sung-Ki;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.86-89
    • /
    • 2011
  • Purpose: The KOTRON-13 cyclotron was developed in South Korea and was introduced to regional cyclotron centers to produce short-lifetime medical radioisotopes. However, this cyclotron has limited capacity to produce carbon-11 isotope so far. We herein study how to develop and optimize an effective carbon-11 target system in the KOTRON-13 cyclotron by changing cooling system, combing with fluorine-18 target and evaluating beam currents. Materials and Method: To develop the optimal carbon-11 target and an effective cooling system, we designed the carbon-11 target system by Stopping and Range of Ions in Matter (SRIM) simulation program and considered the cavity pressure during irradiation at target grid. In this investigation, we evaluated the yield of carbon-11 production at different beam currents and the stability of the operation of the KOTRON-13 cyclotron. Results: The production of carbon-11 was enhanced from about 1.700 mCi ($50{\mu}A$) to 2,000 mCi ($60{\mu}A$) on the carbon-11 target which developed by seoul national university bundang hospital (SNUBH) and Samyoung Unitech. Additionally, the cooling condition was showed stable to produce carbon-11 under high beam current. Conclude: The carbon-11 target system of the KOTRON-13 cyclotron was successfully developed and improved carbon-11 production. Consequently, the operation of carbon-11 target system was highly effective and stable compare with other commercial cyclotrons. Our results are believed that this optimal carbon-11 target system will be helpful for the routine carbon-11 production in the KOTRON-13 cyclotron.

  • PDF

Production of $^{11}C$ labeled Radiopharmaceuticals using $[^{11}C]CO_2$ Produced in the KOTRON-13 (한국형 사이클로트론(KOTRON-13)을 이용한 $[^{11}C]CO_2$ 생산과 다양한 $^{11}C$-표지 방사성의약품 생산 적용)

  • Lee, Hong Jin;Park, Jun Hyung;Moon, Byung Seok;Lee, In Won;Lee, Byung Chul;Kim, Sang Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • Purpose : The KOTRON-13 cyclotron was developed and installed in regional cyclotron centers to produce short-lifetime medical radioisotopes. However, this cyclotron has limited capacity to produce $^{11}C$ so far. In present study, we developed an effective $^{11}C$ target system combining with fluorine-18 target and applied to the production of various $^{11}C$ radiopharmaceuticals. Materials and Methods : To develop the optimal $^{11}C$ target system and effective its cooling system, we designed the $^{11}C$ target system by Stopping and Range of Ions in Matter (SRIM) simulation program and considered the cavity pressure during irradiation at target grid. In this investigation, we modified target materials, cavity shapes and the position of cooling system in $^{11}C$ target and then evaluated $[^{11}C]CO_2$ production at different beam currents, thickness of the target foil, oxygen content of nitrogen gas and target gas loading pressure. Also, we evaluate the production of several $^{11}C$ radiopharmaceuticals such as [$^{11}C$]PIB, [$^{11}C$]DASB, and [$^{11}C$]Clozapine. Results : $[^{11}C]CO_2$ was produced about 74 GBq for 30min irradiation at 60 ${\mu}A$ of beam current as following conditions: thickness of the target foil: 19 nm HAVAR, oxygen content of nitrogen: under 50 ppb, target gas loading pressure: 24 bar. Additionally, the cooling system was stable to produce $[^{11}C]CO_2$ at high beam current. The radiochemical yields of [$^{11}C$]PIB, [$^{11}C$]DASB, and [$^{11}C$]Clozapine showed about 26-38% with over 127 GBq/umol of specific activity. Conclusion : The carbon-11 target system in the KOTRON-13 cyclotron was successfully developed and showed stable production of $[^{11}C]CO_2$. These results showed that our $^{11}C$ target system will be compatible with other commercial system for the routine $^{11}C$ radiopharmaceuticals production in the KOTRON-13 cyclotron.

  • PDF