• Title/Summary/Keyword: Fluorine plasma

Search Result 107, Processing Time 0.027 seconds

Removal of Hydrogen Fluoride from Waterjet Plasma Wastewater by Electrocoagulation (전해응집법에 의한 불화수소 함유 워터젯 플라즈마 폐수처리)

  • Lee, Chae Hong;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.702-708
    • /
    • 2012
  • Tetrafluoromethane ($CF_4$) has been used as etching and Chemical Vapor Deposition (CVD) gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetimes which cause the global warming effect. Also, the wastewater including the fluorine is caused by of the ground water pollution. Long-term consumption of water containing excessive fluoride can lead to fluorosis of the teeth and bones. The wastewater including the fluorine among the by-product which is generated by using the waterjet plasma after destroying $CF_4$ by HF is generated. The system which can remove the hydrogen fluoride among the wastewater by using the electrocoagulation using this wastewater the aluminum electrode was developed. The operating condition such as initial pH, electrocoagulation time, wastewater flow rate, current density were investigated experimentally using a electrocoagulation. Through the parametric studies, the highest hydrogen fluoride destruction of 85% was achieved at 3.5 initial pH, 10 min electrocoagulation time, 10 mL/min wastewater flow rate and $159A/m^2$ current density.

A Study on the Etcting Technology for Metal Interconnection on Low-k Polyimide (Low-k Polyimide상의 금속배선 형성을 위한 식각 기술 연구)

  • Mun, Ho-Seong;Kim, Sang-Hun;An, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.450-455
    • /
    • 2000
  • For further scaling down of the silicon devices, the application of low dielectric constant materials instead of silicon oxide has been considered to reduce power consumption, crosstalk, and interconnection delay. In this paper, the effect of $O_2/SF_6$ plasma chemistry on the etching characteristics of polyimide-one of the promising low-k interlayer dielectrics-has been studied. The etch rate of polyimide decreases with the addition of $SF_6$ gas due to formation of nonvolatile fluorine compounds inhibiting reaction between oxygen and hydrocarbon polymer, while applying substrate bias enhances etching process through physical attack. However, addition of small amount of $SF_6$ is desirable for etching topography. $SiO_2$ hard mask for polyimide etching is effective under $O_2$plasma etching(selectivity~30), while $O_2/SF_6$ chemistry degrades etching selectivity down to 4. Based on the above results, $1-2\mu\textrm{m}$ L&S PI2610 patterns were successfully etched.

  • PDF

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

HYDROGEN PLASMA DURABILITY OF $SnO_2$:F FILMS (불소 도핑 이산화주석 박막의 수소플라즈마 내구성)

  • Yoon, Kyung-Hoon;Song, Jin-Soo;kang, Kee-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.847-849
    • /
    • 1992
  • Fluorine-doped ($SnO_2$:F) thin films obtained by pyrosol deposition method have been exposed to R.F. excited pure hydrogen plasma under the following conditions; substrate temperature of 200$^{\circ}C$, $H_2$ pressure of 1 Torr, R.F. input power of 50 mW/$\textrm{cm}^{2}$, $H_2$ flow rate of 30cc/min and exposure time of 15-600 seconds. It is found that the sheet resistance of the films remains unchanged or rather slightly reduces for initial exposure time of 30-60 seconds, but increases sharply with further increasing the exposure time. The optical transmittance of $SnO_2$:F films slows a rapid fall with increasing exposure time except for a film obtained with a solution having $CH_3OH/H_2O$ mol ratio of 2.65, its degradations at the exposure time of 30-60 seconds are about 7-15%. In addition, the exposure of the films to hydrogen plasma atmosphere leads to remarkable changes in the microstructure and chemical composition, which should be attributed to the reduction of $SnO_2$ to SnO and to elemental Sn.

  • PDF

The Etching Characteristics of Polyimide Thin Films using CF4O2 Gas Plasma (CF4O2 gas 플라즈마를 이용한 폴리이미드 박막의 식각)

  • 강필승;김창일;김상기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.393-397
    • /
    • 2002
  • Polyimide (PI) films have been studied widely as the interlayer dielectric materials due to a low dielectric constant, low water absorption, high gap-fill and planarization capability. The polyimide film was etched using inductively coupled plasma system. The etcying characteristics such as etch rate and selectivity were evaluated at different $CF_4/(CF_4+O_2)$chemistry. The maximum etch rate was 8300 ${\AA}/min$ and the selectivity of polyimide to SiO$_2$was 5.9 at $CF_4/(CF_4+O_2)$ of 0.2. Etch profile of polyimide film with an aluminum pattern was measured by a scanning electron microscopy. The vertical profile was approximately $90^{\circ}$ at $CF_4/(CF_4+O_2)$ of 0.2. As 20% $CF_4$ were added into $O_2$ plasma from the results of the optical emission spectroscopy, the radical densities of fluorine and oxygen increased with increasing $CF_4$ concentration in $CF_4/O_2$ from 0 to 20%, resulting in the increased etch rate. The surface reaction of etched PI films was investigated using x-ray photoelectron spectroscopy.

SF6 and O2 Effects on PR Ashing in N2 Atmospheric Dielectric Barrier Discharge

  • Jeong, Soo-Yeon;Kim, Ji-Hun;Hwang, Yong-Seuk;Kim, Gon-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.204-209
    • /
    • 2006
  • Photo Resist (PR) ashing process was carried out with the atmospheric pressure- dielectric barrier discharge (ADBD) using $SF_6/N_2/O_2$. Ashing rate (AR) was sensitive to the mixing ratio of the oxygen and nitrogen of the blower type of ADBD asher. The maximum AR of 5000 A/min was achieved at 2% of oxygen in the $N_2$ plasma. With increasing the oxygen concentration to more than 2% in the $N_2$ plasma, the discharge becomes weak due to the high electron affinity of oxygen, resulting in the decrease of AR. When adding 0.5% of SF6 to $O_2/N_2$ mixed plasma, the PR AR increased drastically to 9000 A/min and the ashed surface of PR was smoother compared to the processed surface without $SF_6$. Carbon Fluorinated polymer may passivate the PR surface. It was also observed that the glass surface was not damaged by the fluorine.

A Study on Plasma Etching Reaction of Cobalt for Metallic Surface Decontamination (금속 표면 제염을 위한 코발트의 플라즈마 식각 반응 연구)

  • Jeon, Sang-Hwan;Kim, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • In this study, plasma processing of metal surface is experimentally investigated to enhance the surface decontamination efficiency and to find out the reaction mechanism. Cobalt, the major contaminant in the nuclear facilities, and three fluorine-containing gases, $CF_4/O_2$, $SF_6/O_2$, and $NF_3$ are chosen for the investigation. Thin metallic disk specimens are prepared and their surface etching reactions with the three plasma gases are examined. Results show that the maximum etching rate of $17.2\;{\mu}m/min.$ is obtained with NF3 gas at $420^{\circ}C$, while with $CF_4/O_2$, $SF_6/O_2$ gas plasmas those of $2.56\;{\mu}m/min.$ and $1.14\;{\mu}m/min.$ are obtained, respectively. Along with etching experiments, constituent elements of the reaction products are identified to be cobalt, oxygen, and fluorine by AES (Auger Electron Spectroscopy) analysis. It turns out that the oxygen atoms are physically adsorbed ones to the surface from the ambient not participation ones during the analysis after reaction, which supports that the surface reaction of cobalt is mainly to be a fluorination reaction.

  • PDF

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • 이석형;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.167-272
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films havc been of interest due to their lower dielectric constant and compatibility with existing process tools. However, instability issues related to hond and increasing dielectric constant due to water absorption when the SiOF film was exposured to atmospheric ambient. Therefore, the purpose nf this research is to study the effect of post oxygen plasma treatment on the resistance of nioisture absorption and reliability of SiOF film. Improvement of moisture ahsorption resistance of SiOF film is due to the forming of thin $SiO_2$ layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the numher of Si-F honds that tend to associate with OH honds. However, the dielectric constant was inucased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and $300^{\circ}C$ of substrate temperature.

  • PDF

Etching Characteristics of $SrBi_2Ta_2O_9$ Thin Film with adding $Cl_2$ into $CF_4/Ar$ plasma ($CF_4/Ar$ 플라즈마 내 $Cl_2$첨가에 의한 $SrBi_2Ta_2O_9$ 박막의 식각 특성)

  • Kim, Dong-Pyo;Kim, Chang-Il;Lee, Won-Jae;Yu, Byung-Gon;Kim, Tae-Hyung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.67-70
    • /
    • 2001
  • $SrBi_2Ta_2O_9$ thin films were etched at high-density $Cl_2/CF_4/Ar$ in inductively coupled plasma system. The chemical reactions on the etched surface were studied with x-ray photoelectron spectroscopy and secondary ion mass spectrometry. The etching of SBT thin films in $Cl_2/CF_4/Ar$ were chemically assisted reactive ion etching. The maximum etch rate was 1060 Am /min in $Cl_2$(20)/CF_4(20)/Ar(80). The small addition of $Cl_2$ into $CF_4$(20)/Ar(80) plasma will decrease the fluorine radicals and the increase CI radical. The etch profile of SBT thin films in $Cl_2/CF_4/Ar$ plasma is steeper than in $CF_4$/Ar plasma.Ā저會Ā저ﶖ⨀⡌ឫഀĀ᐀會Ā᐀㡆ﶖ⨀쁌ឫഀĀ᐀會Ā᐀遆ﶖ⨀郞ග堂瀀ꀏ會Āﶖ⨀〲岒ऀĀ᐀會Ā᐀䁇ﶖ⨀젲岒Ā㰀會Ā㰀顇ﶖ⨀끩Ā㈀會Ā㈀ﶖ⨀䡪Ā᐀會Ā᐀䡈ﶖ⨀Ā᐀會Ā᐀ꁈﶖ⨀硫Ā저會Ā저ﶖ⨀샟ගကĀ저會Ā저偉ﶖ⨀栰岒ఀĀ저會Ā저ꡉﶖ⨀1岒Ā저會Ā저Jﶖ⨀惝ග؀Ā؀會Ā؀塊ﶖ⨀ග㼀Ā切會Ā切끊ﶖ⨀⣟ගఀĀ搀會Ā搀ࡋﶖ⨀큭킢Ā저會Ā저

  • PDF

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).